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Abstract

In this paper we explore the usefulness of various types
of publication-related metadata, such as citation net-
works and curated databases, for the task of identify-
ing genes in academic biomedical publications. Specif-
ically, we examine whether knowing something about
which genes an author has previously written about,
combined with information about previous coauthors
and citations, can help us predict which new genes the
author is likely to write about in the future. Framed in
this way, the problem becomes one of predicting links
between authors and genes in the publication network.
We show that this solely social-network based link pre-
diction technique outperforms various baselines, in-
cluding those relying only on non-social biological in-
formation.

Introduction & related work
Social networks, in the form of bibliographies and citations,
have long been an integral part of the scientific process.
Most scientists begin their exploration of a new problem
with an intense investigation of the relevant literature. In
a new or small field, for which the universe of such cita-
tions is relatively small, both a broad and deep search is
manageable. As the size of the set of related papers grows,
however, a researcher’s time and attention can easily be-
come overwhelmed. While the Internet has provided scien-
tists with new tools for performing these literature reviews
more quickly and precisely, it is usually left up to the user
to guide the search themselves. In other words, one has to
know what she is looking for. At the same time the space of
accessible, and possibly relevant, papers has increased even
more swiftly, leaving many valuable publications undiscov-
ered. This is the problem we address in this paper: how to
leverage the information contained within these publication
networks, along with information concerning the individual
publications themselves and a user’s history, to help predict
which entities the user might be most interested in and thus
intelligently guide his search.

Specifically, our application domain is the task of predict-
ing which genes and proteins a biologist is likely to write
about in the future (for the rest of the paper we will use the
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term ’gene’ to refer both to the gene and gene product, or
protein). We define a citation network as a graph in which
publications and authors are represented as nodes, with bi-
directional authorship edges linking authors and papers, and
uni-directional citation edges linking papers to other papers
(the direction of the edge denoting which paper is doing the
citing and which is being cited). We can construct such
a network from a given corpus of publications along with
their lists of cited works. There exist many so called cu-
rated literature databases for biology in which publications
are tagged, or manually labeled, with the genes with which
they are concerned. We can use this metadata to introduce
gene nodes to our enhanced citation network, which are bi-
directionally linked to the papers in which they are tagged.
Finally, we exploit a third source of data, namely biological
domain expertise in the form of ontologies and databases of
facts concerning these genes, to create association edges be-
tween genes which have been shown to relate to each other
in various ways. We call the entire structure an annotated
citation network.

Although academics have long recognized and inves-
tigated the importance of such networks, their investiga-
tions have often been focused on historical (Garfield, Sher,
and Torpie 1964), summary, or explanatory purposes (Ero-
sheva, Fienberg, and Lafferty 2004; Liu et al. 2005;
Cardillo, Scellato, and Latora 2006; Leicht et al. 2007).
While other work has been concerned with understanding
how influence develops and flows through these networks
(Dietz, Bickel, and Scheffer 2007), we instead focus on
the problem of link prediction (Cohn and Hofmann 2001;
Liben-Nowell and Kleinberg. 2003). Link prediction is the
problem of predicting which nodes in a graph, currently un-
linked, ”should” be linked to each other, where ”should” is
defined in some application-specific way. This may be use-
ful to know if a graph is changing over time (as in citation
networks when new papers are published), or if certain edges
may be hidden from observation (as in detecting insider trad-
ing cabals). In our setting, we seek to discover edges be-
tween authors and genes, indicating genes about which an
author has yet to write, but which he may be interested in.

While there has been extensive work on analyzing and
exploiting the structure of networks such as the web and ci-
tation networks (Kleinberg 1999; Kleinberg et al. 1999),
most of the techniques used for identifying and extracting



biological entities directly from publication text (Cohen and
Hersh 2005; Feldman et al. 2003; Murphy et al. 2004;
Franzén et al. 2002; Bunescu et al. 2004; Shi and Campagne
2005) and curated databases (Wang et al. 2006) rely on per-
forming named entity recognition on the text itself (Collins
and Singer 1999) and ignore the underlying network struc-
ture entirely. While these techniques perform well given a
paper to analyze, they are impossible to use when such text
is unavailable, as in our link prediction task.

In the following sections, respectively, we discuss the
topology of our annotated citation network, along with de-
scribing the data sources from which the network was con-
structed. We then introduce random walks, the technique
used for calculating the proximity of nodes in our graph,
thus suggesting plausible novel links between authors and
genes. Finally, we describe an extensive set of ablation stud-
ies performed to assess the relative importance of each type
of edge, or relation, in our model and discuss the results,
concluding with a view towards a future model combining
network and text information.

Data
We are lucky to have access to many sources of high quality
data:
• PubMed and PubMed Central (PMC): PubMed is a free,

open-access on-line archive of over 18 million biologi-
cal abstracts and bibliographies, including citation lists,
for papers published since 1948 (U.S. National Library
of Medicine 2008). PubMed Central contains full-text
copies of over one million of these papers for which open-
access has been granted (National Institues of Health
2008).

• The Saccharomyces Genome Database (SGD): A
database of various types of information concerning the
yeast organism Saccharomyces cerevisiae, including de-
scriptions of its genes along with over 40,000 papers man-
ually tagged with the genes they mention (Dwight et al.
2004).

• The Gene Ontology (GO): A large ontology describing
the properties of and relationships between various bio-
logical entities across numerous organisms (Consortium
2000).
From the data provided by these sources we are able to

extract the nodes and edges that make up our annotated ci-
tation network, shown graphically in Figure 1. Specifically
our network consists of the following.

Nodes
The nodes of our network represent the entities we are inter-
ested in.
• 44,012 Papers contained in SGD for which PMC biblio-

graphic data is available.
• 66,977 Authors of those papers, parsed from the PMC ci-

tation data. Each author’s position in the paper’s citation
(i.e. first author, last author, etc.) is also recorded, al-
though it is not represented in the graph.

• 5,816 Genes of yeast, mentioned in those papers.

Figure 1: Topology of the full annotated citation network,
node names are in bold while edge names are in italics.

Edges
We likewise use the edges of our network to represent the
relationships between and among the nodes, or entities.

• Authorship: 178,233 bi-directional edges linking author
nodes and the nodes of the papers they authored.

• Mention: 160,621 bi-directional edges linking paper
nodes and the genes they discuss.

• Cites: 42,958 uni-directional edges linking nodes of cit-
ing papers to the nodes of the papers they cite.

• Cited: 42,958 uni-directional edges linking nodes of cited
papers to the nodes of the papers that cite them

• RelatesTo: 1,604 uni-directional edges linking gene nodes
to the nodes of other genes appearing in their GO descrip-
tion.

• RelatedTo: 1,604 uni-directional edges linking gene
nodes to the nodes of other genes in whose GO descrip-
tion they appear.

The SGD database contains papers published from 1950
through 2008, with the number of papers annotated growing
exponentially each year, as shown in Figure 2. The relation-
ships between genes, derived from GO, are likewise labeled
with the year in which they were discovered. This allows
us to conveniently segment all the data chronologically, en-
abling pure temporal cross validation1.

Methods
Now that we have a representation of the data as a graph,
we are ready to begin the calculation of our link predictions.
The first step is to pick a node, or set of nodes, in the graph to
which our predicted links will connect. These are our query
nodes. We then perform a random walk out from the query
node, simultaneously following each edge to the adjacent
nodes with a probability proportional to the inverse of the
total number of adjacent nodes (Cohen and Minkov 2006).
We repeat this process a number of times, each time spread-
ing our probability of being on any particular node, given
we began on the query node. If there are multiple nodes

1An on-line demo of our work, including links to the net-
work data file used for the experiments, can be found at
http://yeast.ml.cmu.edu/nies/.



Figure 2: Distribution of papers published per year in the
SGD database.

in the query set, we perform our walk simultaneously from
each one. After each step in our walk we have a probability
distribution over all the nodes of the graph, representing the
likelihood of a walker, beginning at the query node(s) and
randomly following outbound edges in the way described,
of being on that particular node. Under the right conditions,
after enough steps this distribution will converge. We can
then use this distribution to rank all the nodes, predicting
that the nodes most likely to appear in the walk are also the
nodes to which the query node(s) should most likely con-
nect. In practice, the same results can be achieved by multi-
plying the adjacency matrix of the graph by itself. Each such
multiplication represents one complete step in the walk.

We can adjust the adjacency matrix (and thus the graph)
by selectively hiding, or removing, certain types of edges.
For instance, if we want to isolate the influence of citations
on our walk, we can remove all the citation edges from the
graph, perform a walk, and compare the results to a walk
performed over the full graph.

Likewise, in order to evaluate our predicted edges, we can
hide certain instances of edges, perform a walk, and com-
pare the predicted edges to the actual withheld ones. For
example, if we have all of an author’s publications and their
associated gene mention data for the years 2007 and 2008,
we can remove the links between the author and the genes
he mentioned in 2008 (along with all other edges gleaned
from 2008 data), perform a walk, and then see how many
of those withheld gene-mention edges were correctly pre-
dicted. Since this evaluation is a comparison between one
unranked set (the true edges) and another ranked list (the
predicted edges) we can use the standard information re-
trieval metrics of precision, recall and F1.

Experiment
To evaluate our network model, we first divide our data into
two sets:
• Train, which contains only authors, papers, genes and

their respective relations which were published before
2008

• Validation, which contains new2

(author Mentions→ genes) relationships that were
first published in 2008.

From this Train data we create a series of subgraphs,
each emphasizing a different set of relationships between
the nodes. These subgraphs are summarized in Figure 3.
By selectively removing edges of a certain type from the
FULL graph we were able to isolate the effects of these
relations on the random walk and, ultimately, the predicted
links. Specifically, we classify each graph into one of four
groups and later use this categorization to assess the relative
contribution of each edge type to the overall link prediction
performance.

Baseline
The baseline graphs are UNIFORM , ALL PAPERS
and AUTHORS. UNIFORM and ALL PAPERS do
not depend on the author node. UNIFORM , as its name
implies, is simply the chance of predicting a novel gene cor-
rectly given that you select a predicted gene uniformly at
random from the universe of genes. Since there are 5,816
gene names, and on average each author in our query set
writes about 6.7 new genes in 2008, the chance of randomly
guessing one of these correctly is 6.7/5816 = .12%. Us-
ing these values we can extrapolate this model’s expected
precision, recall and F1. Relatedly, ALL PAPERS, while
also independent of authors, nevertheless takes into account
the distribution of genes across papers in the training graph.
Thus its predictions are weighted by the number of times a
gene was written about in the past. This model provides a
more reasonable baseline. AUTHORS considers the dis-
tribution of genes over all papers previously published by
the author. While this type of model may help recover pre-
viously published genes, it may not do as well identifying
new genes.

Social
The social graphs (RELATED PAPERS,
RELATED AUTHORS, COAUTHORS,
FULL MINUS RELATED GENES and
CITATIONS) are constructed of edges that convey
information about the social interactions of authors, papers
and genes. These include facts about which authors have
written together, which papers have cited each other, and
which genes have been mentioned in which papers.

Content
In addition to social edges, some graphs also en-
code information regarding the biological con-
tent of the genes being published. The graph

2We restrict our evaluation to genes about which the author
has never previously published (even though an author may pub-
lish about them again in 2008), since realistically, these predictions
would be of no value to an author who is already familiar with his
own previous publications.



Figure 3: Subgraphs queried in the experiment, grouped by type: B for baselines, S for social networks, C for networks convey-
ing biological content, and S+C for networks making use of both social and biological information. Shaded nodes represent the
node(s) used as a query. **For graph RELATED GENES, which contains the two complimentary uni-directional Relation
edges, we also performed experiments on the two subgraphs RELATED GENESRelatesTo and RELATED GENESRelatedTo
which each contain only one direction of the relation edges. For graph CITATIONS, we similarly constructed subgraphs
CITATIONSCites and CITATIONSCited.



RELATED GENES models only this biological
content, while FULL MINUS COAUTHORS,
FULL MINUS CITATIONS, FULL and
FULL(AUTHOR + 1 GENE) all contain edges
representing both social and biological content.

Protocol
For our query nodes we select the subset of authors who
have publications in both the Train and Validation
set. To make sure we have fresh, relevant publications for
these query authors, and to minimize the impact of possible
ambiguous name collision, we further restrict the query au-
thor list to only those authors who have publications in both
2007 and 2008. This yields a query list, ALLAUTHORS,
with a total of 2,322 authors, each to be queried indepen-
dently, one at a time. We further create two other query au-
thor lists, FIRSTAUTHORS and LASTAUTHORS containing
544 and 786 authors respectively, restricted to those authors
who appear as the first or last author, respectively, in their
publications in the Validation set. The purpose of these
lists of queries is to determine whether an author’s position
in a paper’s list of authors has any impact in our ability to
predict the genes he or she might be interested in.

Given these sets of graphs and query lists, we then query
each author in each of our three lists, independently, against
each subgraph in Figure 3. Each such (author, graph)
query yields a ranked list of genes predicted for that au-
thor given that network representation. By comparing this
list of predicted genes against the set of true genes from
Validation we are able to calculate the performance of
each (author, graph) pairing3. These resulting precision, re-
call, F1 and MAP metrics, broken down for each set of au-
thor positions, are summarized in Figure 4 respectively.

Querying with extra information
Finally, we were interested in seeing what effect adding
some limited information about an author’s 2008 publica-
tions to our query would have on the quality of our predic-
tions. This might occur, for instance, if we have the text of
one of the author’s new papers available and are able to per-
form basic information extraction to find at least one gene.
The question is, can we leverage this single, perhaps easy
to identify gene, to improve our chances of predicting or
identifying other undiscovered new genes? To answer this
question, in addition to querying each author in isolation,
we also queried, together as a set, each author and the one
new gene about which he published most in 2008 (see graph
FULL(AUTHOR+1 GENE) in Figure3). These results
are summarized, along with the others, in Figure 4, again
broken down by author position.

Results
Using Figures 3 and 4 as guides, we turn now to an anal-
ysis of the effects different edge types have on our ability

3Since the list of predicted genes is sometimes quite long (since
it is a distribution over all genes in the walk), we set a threshold
and all evaluations are calculated only considering the top 20 pre-
dictions made.

to successfully predict new genes. We should first explain
the absence of results for the AUTHORS graph, and the
lines for UNIFORM and ALL PAPERS in Figure 4.
Since these baselines do not depend on the query, they are
constant across models and are thus displayed as horizontal
lines across the charts in Figure 4. AUTHORS is miss-
ing because it is only able to discover genes that have al-
ready been written about by the query authors in the training
graph. Since our evaluation metrics only count the predic-
tion of novel genes, AUTHORS’s performance is neces-
sarily zero.

Given these baselines, let us next consider the role of au-
thor position on prediction performance. It is apparent from
the results that, in almost all settings, querying based on the
first author of a paper generates the best results, with query-
ing by last author performing the worst. This seems to sug-
gest that knowing the first author of a paper is more informa-
tive than knowing who the last author was in terms of pre-
dicting which genes that paper may be concerned with. De-
pending on the specifics of one’s own discipline, this may be
surprising. For example, in computer science it is often cus-
tomary for an advisor, lab director or principal investigator
to be listed as the last author. One might assume that the sub-
ject of that lab’s study would be most highly correlated with
this final position author, but the evidence here seems to sug-
gest otherwise. Tellingly, the only case in which the last au-
thor is most significant4 is in the CITATIONS CITED
model. Recall that in this model edges from cited papers to
their citing papers are present. These results may suggest
that in this model, knowing the last author of the paper actu-
ally is more valuable.

Given that in most cases the models queried using
first authors performed the best, the columns of Fig-
ure 4 have been positioned in order of increasing first
author F1 performance, and all subsequent comparisons
are made with respect to the first author queries, un-
less otherwise stated. Thus we notice that those mod-
els relying solely on the biological GO information re-
lating genes to one another (Content graphs from Fig-
ure 3) perform significantly5 worse than any other model,
and are in fact in the same range6 as the UNIFORM
model. Indeed, the FULL model benefits from hav-
ing the relations removed, as it is outperformed5 by the
FULL MINUS RELATED GENES model.

There are a few possible explanations for why these
content-based biological edges might be hurting perfor-
mance. First, scientists might not be driven to study genes
which have already been demonstrated to be biologically re-
lated to one another. Since we are necessarily using biolog-
ical facts already discovered, we may be behind the wave of
new investigation. Second, these new investigations, some
of them biologically motivated, might not always turn out
conclusively or successfully. This would likewise lead to
the genes being studied in this way lying outside the scope

4Measured by 80% confidence intervals.
5p < .01 using the Wilcoxon signed rank test.
6Containing the UNIFORM baseline in their 95% confi-

dence intervals.



Figure 4: Mean percent precision, recall and F1 @20 of queries across graph types, broken down by author position, shown
with error bars demarking the 95% confidence interval. Baselines UNIFORM and ALL PAPERS are also displayed.



of our biological content. Finally, it is possible that our
methods for parsing and interpreting the GO information
and extracting the relationships between genes may not be
capturing the relevant information in the same way a trained
biologist might be able to. Relatedly, the ontologies them-
selves might be designed more for summarizing the current
state of knowledge, rather than suggesting promising areas
of pursuit.

In contrast, the models exploiting the social re-
lationships in CITATIONS, COAUTHORS,
RELATED AUTHORS and RELATED PAPERS
all outperform7 the ALL PAPERS baseline. While each
of these social edge types is helpful on its own, their full
combination is, perhaps counter-intuitively, not the best
performing model. Indeed, while FULL outperforms5 its
constituent CITATIONS and COAUTHORS models,
it nevertheless benefits slightly8 from having the coauthor
edges removed (as in FULL MINUS COAUTHOR).
This may be due to competition among the edges for the
probability being distributed by our random walk. The more
paths there are out of a node, the less likely the walker is
to follow any given one. Thus, by removing the (many)
coauthorship edges from the FULL graph, we allow the
walk to reach a better solution more quickly.

Interestingly, the best performance9 of the single-author
query models is achieved by the relatively simple, pure col-
laborative filtering RELATED PAPERS model (Gold-
berg et al. 1992). Explained in words, this social model
predicts that authors are likely to write about genes that co-
occur with an author’s previously studied genes in other peo-
ple’s papers. This makes sense since, if other people are
writing about the same genes as the author, they are more
likely to share other common interests and thus would be the
closest examples of what the author may eventually become
interested in in the future.

Finally we examine the question of whether having not
only a known author to query, but also one of this au-
thor’s new genes, aids in prediction. The results for the
FULL(AUTHOR + 1 GENE) model10 seem to indi-
cate that the answer is yes. Adding a single known new
gene to our author query of the FULL model improves
our prediction performance by almost 50%, and signifi-
cantly outperforms11 the best single-author query model,
RELATED PAPERS, as well. This is a promising re-
sult, as it suggests that the information contained in our net-
work representation can be combined with other sources of
data (gleaned from performing information extraction on pa-
pers’ text, for example) to achieve even better results than
either method alone.

7Baseline is out of their 95% confidence intervals.
8p < .15 using the Wilcoxon signed rank test.
9p < .10 using the Wilcoxon signed rank test.

10During evaluation the queried new gene is added to the set of
previously observed genes and thus does not count towards preci-
sion or recall.

11p < .02 using a paired sign test.

Conclusions & future work
In this paper we have introduced a new graph-based anno-
tated citation network model to represent various sources
of information regarding publications in the biological do-
main. We have shown that this network representation alone,
without any features drawn from text, is able to outperform
competitive baselines. Using extensive ablation studies we
have investigated the relative impact of each of the differ-
ent types of information encoded in the network, showing
that social knowledge often trumps biological content, and
demonstrated a powerful tool for both combining and isolat-
ing disparate sources of information.

We have further shown that, in the domain of Saccha-
romyces research from which our corpus was drawn, know-
ing who the first author of a paper is tends to be more in-
formative than knowing who the last author is (contrary to
some conventional wisdom). Finally, we have shown that,
despite performing well on its own, our network representa-
tion can easily be further enhanced by including in the query
set other sources of knowledge about a prediction subject
gleaned from separate techniques, such as information ex-
traction and document classification. It is still unclear, how-
ever, exactly how much such information can be combined
before diminishing returns are encountered. For instance,
we know that adding a single new query significantly im-
proves prediction accuracy, but what about adding a second
or third gene? Relatedly, does it matter if the gene provided
is relatively common or rare in the over distribution of genes
across publications? Does knowledge of a harder to recog-
nize gene provide more benefit that an easy one?

Following up on an existing model of document struc-
ture (Cohen, Wang, and Murphy 2003; Arnold and Cohen
2008), we hope to extend this annotated citation network
model to include the text and structure of the document it-
self. In this proposed model, different sections of a docu-
ment, such as the abstract and image captions, along with
the words that occur in those sections, would be represented
as nodes in a document graph, with edges connecting re-
lated entities (such as the sequential ordering of paragraphs
or cross-referencing of images and citations in the text).

We also see value in incorporating a temporal dimension
to our network. In our current model all edges are walked
upon with equal probability, regardless of the temporal dis-
tance between the two connected nodes. We might do better
by taking this time distance into account: for example, coau-
thorship on a paper 20 years ago may carry less weight than
a collaboration just a few years ago.

In addition to leveraging traditional information extrac-
tion techniques to aid in our graph search, as already demon-
strated, we would also like to explicitly model the text of the
document as a graph (Minkov, Cohen, and Ng 2006). For
example, yeast gene names share morphological features:
all genes sharing the same three letter prefix are functionally
related. We hope to improve performance by modeling these
types of relationship graphically.

We are also interested in the other direction: incorporat-
ing the results of graphical methods into standard informa-
tion extraction techniques. Since the end result of our link
prediction algorithm is a distribution over nodes, one sim-



ple way to do this would be to use that distribution as a prior
for any number of probabilistic information extraction meth-
ods.
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