
Exploiting domain and task regularities

for robust named entity recognition

Ph.D. Thesis Proposal

Andrew O. Arnold

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

October 22, 2008

Thesis Committee:

William W. Cohen (CMU), Chair
Tom M. Mitchell (CMU)
Noah A. Smith (CMU)

ChengXiang Zhai (UIUC)

Contents

1 Thesis 4

2 Current State of the Art 6

2.1 Introduction . 6

2.2 Problem . 8

2.3 Transfer learning . 9

2.4 Domain adaptation . 10

2.5 Multi-task learning . 11

2.6 Semi-supervised learning . 11

2.7 Non-transfer robustness . 12

2.8 Examples of transfer learning settings & techniques 12

2.8.1 Inductive learning . 13

2.8.2 Transductive learning . 13

2.8.3 Naive Bayes classifier . 14

2.8.4 Maximum entropy . 16

2.8.5 Support vector machines (SVM) . 18

2.8.6 Comparison of existing techniques . 19

3 Overall Objective & Preliminary Results 24

3.1 Overall objective . 24

3.2 Feature hierarchy . 24

3.2.1 Hierarchical feature trees . 26

3.2.2 New model: hierarchical prior model 28

3.2.3 An approximate hierarchical prior model 29

3.3 Investigation of hierarchical feature models 31

3.3.1 Data, domains and tasks . 31

3.3.2 Experiments & results . 31

3.3.3 Intra-genre, same-task transfer learning 32

3.3.4 Inter-genre, multi-task transfer learning 33

3.3.5 Comparison of HIER prior to baselines 34

3.3.6 Conclusions: hierarchical feature models 34

3.4 Structural frequency features . 35

3.4.1 Lexical features . 35

3.4.2 Document structure . 37

3.4.3 Structural frequency features . 38

3.5 Snippets . 41

3.5.1 Positive snippets . 42

3.5.2 Negative snippets . 42

3.6 Investigation of structural frequency and snippet models 43

3.6.1 Data . 43

3.6.2 Experiment . 43

3.6.3 Results . 44

3.6.4 Structural frequency features . 44

3.6.5 Non-transfer: abstract to abstract . 45

3.6.6 Transfer: abstract to caption, full vs. baseline 46

3.6.7 Transfer: abstract to caption, full vs. ablated 47

3.6.8 Conclusions: structural frequency features and snippets 48

4 Proposed Work & Schedule 49

4.1 Task I. Cross-task & cross-domain learning 50

4.1.1 Domain adaptation . 50

4.1.2 Multi-task learning . 50

4.1.3 Parallel labels: image pointers . 51

4.1.4 Parallel labels: image & experiment type 51

4.2 Task II. Relating external and derived knowledge 51

4.2.1 External data sources . 51

4.2.2 Hard & soft labels . 52

4.3 Task III. Combining & verifying techniques 52

4.3.1 Combining techniques . 52

4.3.2 Verifying hypotheses on limited domains 52

4.4 Proposed Schedule . 53

5 References 54

3

1 Thesis

Relaxing assumptions & finding regularities: It is often convenient to make certain
assumptions during the learning process. Unfortunately, algorithms built on these assump-
tions can often break down if the assumptions are not stable between train and test data.
We define a property of the data to be stable if said property remains relatively unchanged
across variations in other aspects of the data, where such properties can be attributes of the
data instances themselves or relationships among different parts of the data; and the ‘vari-
ations’ allowed among the data and the degree to which the stable property must remain
‘unchanged’ is defined with respect to the degree of robustness desired. For instance, in tra-
ditional learning, given (x, y)train drawn from some training distribution Dtrain, and (x, y)test
drawn from some test distribution Dtest, we assume that ptrain(y | x) = ptest(y | x). If we
allow p(y | x) to vary across training and testing data (that is, if we allow Dtrain 6= Dtest, as
in the domain adaptation setting), a standard machine learning technique like naive Bayes
may fail. In the language of this thesis, this learning technique is not robust to this change
in the data. Our thesis is that we can make learned classifiers and extractors more robust
by using data (both labeled and unlabeled) from related domains and tasks, and by exploiting
stable regularities and complex relationships between different aspects of that data.

Exploiting rich relationships: Relatedly, we can do better at various tasks (like informa-
tion extraction) by exploiting the richer relationships found in real-world complex systems.
When we start working with such a system, we usually find it convenient to first abstract
away to a relatively simply stated learning problem, such as: Given an example x, predict
its label y. This type of simplifying reduction is often necessary (at the expense of richer
representations incorporating more domain knowledge and auxiliary sources of information)
in order to frame the learning problem in a way that is consistent with the often harsh
assumptions underlying many favored learning techniques. While these assumptions may be
useful in providing structure in relatively simple learning problems, when faced with complex,
real-world systems, they can often prove burdensome, or fail all together, and may actually
be better replaced with problem-specific structure such as regularities among features or
external sources of data.

Transfer learning: By exploiting these kinds of non-conventional regularities we can more
easily address problems previously unapproachable, like transfer learning. In the transfer
learning setting, the distribution of data is allowed to vary between the training and test
domains, that is, the i.i.d. assumption linking train and test examples is severed. Without
this link between the train and test data, traditional learning is difficult. Take, for example,
the problem of training an extractor to identify the sender and recipient of a letter. For
our training data we are given formal business letters with their senders and recipients
labeled. For testing, however, we are required to identify the sender and recipient not in
business letters but in student e-mails. Whereas in the non-transfer, business to business,
learning case we could exploit regularities in the tokens themselves, for instance, looking for
capitalized words that do not begin a sentence, in the transfer setting, this capitalization
property may no longer hold between the train and test domains, that is, it is not stable. In

4

light of this, we need a new relationship linking the domains together, an information path
linking the training data to the test data. One possibility in this example would be to exploit
the common structure of the letters themselves. Specifically, the property of recipient names
being located at the start of a letter, and sender names being located at the end. This tends
to be true both in formal business letters and informal e-mails and thus provides a stable
regularity by which our classifier can learn, that is, generalize from the training data to the
test data. In this way we can make use of one type of regularity (document structure) when
another (the conditional distribution of capitalized names) ceases to hold.

Thus, in this thesis we try to find learning techniques that can still succeed even in situa-
tions where i.i.d. and other common assumptions are allowed to fail. Specifically, we seek out
and exploit regularities in the problems we encounter and document which specific assump-
tions we can drop and under what circumstances and still be able to complete our learning
task. We further investigate different methods for dropping, or relaxing, some of these re-
strictive assumptions so that we may bring more resources (from auxiliary data, to known
dependencies and other regularities) to bear on the problem, thus producing both better
answers to existing problems, and even being able to begin addressing problems previously
unanswerable, such as those in the transfer learning setting.

5

2 Current State of the Art

2.1 Introduction

The desire to exploit information attained from previous effort, and not to start each new
endeavor de novo is perhaps part of human nature, and certainly a maxim of the scientific
method. Nevertheless, due to the difficulty of integrating knowledge from distinct, but
related, experimental domains (the distribution from which the data is drawn) and tasks
(the type of prediction desired from the learner), it is common practice in most machine
learning studies to focus on training and tuning a model to a single, particular domain and
task pair, or setting, at the expense of all others. Often, once work has completed on one
setting, the researcher begins afresh on the next, carrying over only the techniques and
experience learned, but often not the data itself.

Consider the task of named entity recognition (NER). Specifically, you are given a corpus
of encyclopedia articles in which all the personal name mentions have been labeled. The
standard supervised machine learning problem is to learn a classifier over this training data
that will successfully label unseen test data drawn from the same distribution as the training
data, where “same distribution” could mean anything from having the train and test articles
written by the same author to having them written in the same language. Having success-
fully trained a named entity classifier on this encyclopedia data, now consider the problem of
learning to classify tokens as names in instant messenger data. Clearly the problems of iden-
tifying names in encyclopedia articles and instant messages are closely related, and learning
to do well on one should help your performance on the other. At the same time, however,
there are serious differences between the two problems that need to be addressed. For in-
stance, capitalization, which will certainly be a useful feature in the encyclopedia problem,
may prove less informative in the instant messenger data since the rules of capitalization
are followed less strictly in that domain. Thus there seems to be some need for altering the
classifier learned on the first problem (called the source domain) to fit the specifics of the
second problem (called the target domain). This is the problem of domain adaptation and
is considered a type of transfer learning.

The intuitive solution seems to be to simply train on the target domain data. Since this
training data would be drawn from the same distribution as the data you will ultimately test
over, this approach avoids the transfer issue entirely. The problem with this idea is that often
large amounts of labeled data are not available in the target domain. While it has been shown
that even small amounts of labeled target data can greatly improve transfer results [15,22],
there has been relatively little work, however, on the case when there is no labeled target data
available, that is, totally unsupervised domain adaptation. In this scenario, one way to adapt
a model trained on the source domain is to make the unlabeled target test data available
to the model during training time. Leveraging unlabeled test data during training time is
called transductive learning and is a well studied problem in the scenario when the training
data and test data come from the same domain. However, transduction is not well-studied

6

Figure 1: Venn diagram representation of the subspace of robust learning settings. Domain
adaptation and multi-task learning are represented as subsets of transfer learning, which is
itself a subset of all robust learning techniques. These techniques can also intersect with
semi-supervised methods. A sampling of non-transfer robust learning techniques (such as
sparse feature selection, expectation maximization and principal components analysis) are
also included for completeness. Compare with Table 1, which structures the transfer learning
sub-region into greater detail.

7

in a transfer setting, where the training and test data come from different domains.

In this section we explore this issue and examine existing methods to facilitate the adaptation
of data from one domain (called the source) to problems defined on another related domain
(called the target). This type of problem is generally referred to as domain adaptation [23]
in the literature and constitutes a subproblem in the broader field of transfer learning,
which has been studied as such for at least the past ten years [6, 57]. We also introduce
other forms of robust learning, both within the framework of transfer learning and without,
and show how these transfer learning techniques can be combined with semi-supervised
methods. Figure 1 gives a schematic overview of the way we see these techniques intersecting
and overlapping with one another, while Table 1 provides a detailed breakdown of various
transfer learning settings.

2.2 Problem

For the rest of this section, and for most of the proposal, we will focus on the specific problem
of learning to extract protein names from articles published in biological journals. In the
named entity resolution (NER) formalism, a document is segmented into a sequence of tokens,
with each of these tokens then being classified as belonging to one of a set of possible label
classes – in our case, the binary set {PROTEIN, NON PROTEIN}. A standard technique for
this kind of problem is to gather a corpus of documents drawn from the domain on which you
will eventually be evaluated. These documents then need to be painstakingly hand-labeled
by a domain expert in order to identify which tokens in the document represent proteins,
and which do not. The ‘expertise’ of this domain specialist should not be underestimated,
since such biological distinctions are subtle and often elude all but the most experienced
annotators. The work is therefore slow, and the resulting annotated datasets are often
relatively small and expensive.

We have access to such a corpus of protein-labeled abstracts from biological articles. Several
techniques have been proposed for building protein-name extractors over these abstracts and
their performances have been evaluated with respect to extracting new proteins from other,
previously unseen abstracts drawn from a similar distribution of articles [27]. In our work,
however, we are interested in identifying proteins, not in abstracts, but in the captions of
papers (we use this information to create a structured search engine of images and captions
from biological articles [45]). To this end we have downloaded tens of thousands of open-
access, full text articles from the Internet. Unfortunately, all of these documents are wholly
unlabeled and we do not have the resources to label them ourselves. Thus, our problem is:
given labeled abstracts (source training domain) and unlabeled captions and full text (source
auxiliary training data), how can we train a model that will extract proteins well from unseen
captions (target test domain). This is at once a semi-supervised learning problem (due to
the unlabeled auxiliary training data) [66], and a domain adaptation problem (due to the
difference in domains from which the source and target data are drawn).

The rest of this section goes into more detail concerning the various techniques that currently

8

exist for robust learning, as summarized in Table 1 and Figure 1. Later, Section 3 introduces
our preliminary investigations into these areas. Specifically, Section 3.4.2 introduces a key
insight into the structure of documents that allows us to link the source, target, and auxiliary
domains. Given this perspective, our problem, stated generally as domain adaption from
the abstract (source domain) to the captions (target domain) of a paper, can be viewed
more specifically as learning to transfer information from one part of a structured document
to another, allowing us to overcome the ‘domain-brittleness’ of the commonly used lexical
features, described in Section 3.4.1.

Sections 3.4.3 and 3.5 introduce three new techniques that leverage this structure to produce
models that are able to exploit the unlabeled auxiliary data while at the same time being
robust to shifts between train and test domains. Section 3.3 explains the particulars of the
data and experiments we used to validate these new techniques, while Section 3.6.8 offers a
summary of these preliminary works, anticipating our proposed works in Section 4.

2.3 Transfer learning

The phrase transfer learning covers several different subproblems. When only the type of
data being examined is allowed to vary (from news articles to e-mails, for example), the
transfer problem is called domain adaptation [23]. When the task being learned varies (say,
from identifying person names to identifying protein names), the transfer problem is called
multi-task learning [14]. Both of these are considered specific types of the over-arching
transfer learning problem, and both seem to require a way of altering the classifier learned
on the first problem (called the source domain, or source task) to fit the specifics of the
second problem (called the target domain, or target task).

More formally, given an example x and a class label y, the standard statistical classification
task is to assign a probability, p(y|x), to x of belonging to class y. In the binary classification
case the labels are Y ∈ {0, 1}. In the case we examine, each example xi is represented as a
vector of binary features (f1(xi), · · · , fF (xi)) where F is the number of features. The data
consists of two disjoint subsets: the training set (Xtrain, Ytrain) = {(x1, y1) · · · , (xN , yN)},
available to the model for its training and the test set Xtest = (x1, · · · , xM), upon which we
want to use our trained classifier to make predictions.

In the paradigm of inductive learning, (Xtrain, Ytrain) are known, while both Xtest and Ytest
are completely hidden during training time. In this cases Xtest and Xtrain are both assumed
to have been drawn from the same distribution, D. In the setting of transfer learning,
however, we would like to apply our trained classifier to examples drawn from a distribution
different from the one upon which it was trained. We therefore assume there are two different
distributions, Dsource and Dtarget, from which data may be drawn. Given this notation we
can then precisely state the transfer learning problem as trying to assign labels Y target

test to test
data X target

test drawn from Dtarget, given training data (Xsource
train , Y source

train) drawn from Dsource.
In this thesis we focus on two subproblems of transfer learning:

9

• domain adaptation, where we assume Y (the set of possible labels) is the same for both
Dsource and Dtarget, while Dsource and Dtarget themselves are allowed to vary between
domains.
• multi-task learning [2,14,54,65] in which the task (and label set) is allowed to vary from

source to target.

Domain adaptation can be further distinguished by the degree of relatedness between the
source and target domains. For example, in this work we group data collected in the same
medium (e.g., all annotated e-mails or all annotated news articles) as belonging to the same
genre. Although the specific boundary between domain and genre for a particular set of data
is often subjective, it is nevertheless a useful distinction to draw.

One common way of addressing the transfer learning problem is to use a prior which, in
conjunction with a probabilistic model, allows one to specify a priori beliefs about a distri-
bution, thus biasing the results a learning algorithm would have produced had it only been
allowed to see the training data [50]. In the example from §2.1, our belief that capitalization
is less strict in instant messages than in encyclopedia articles could be encoded in a prior
that biased the importance of the capitalization feature to be lower for instant messages
than encyclopedia articles. In Section 3.2 we address the problem of how to come up with a
suitable prior for transfer learning across named entity recognition problems.

2.4 Domain adaptation

Domain adaptation is distinct from other forms of transfer learning (such as multitask learn-
ing [2,14,54,65]) because we are assuming that the set of possible labels, Y , remains constant
across the various domains, while allowing the distribution of X and, most importantly,
Y |X to change. In our setting, the labels, Y , are members of the binary set {PROTEIN,
NON PROTEIN}, while the instances, X, are the tokens of the documents themselves. An-
other important example of domain adaptation is concept drift, in which the source and
target data’s distributions start out identical, but drifts further and further apart from each
other over time [61].

In prior work, different researchers have made different assumptions about the relationship
between the source and target domain, a defining characteristic of domain adaptation. In the
supervised setting, one can directly compare both the marginal and conditional distributions
of the data in both domains, looking for patterns of generalizability across domains [22,23,35],
as well as examining the common structure of related problems [5,7,9,51]. There is likewise
work that tries to quantify these inter-domain relationships in the unsupervised [4], semi-
supervised [10, 32], and transductive learning settings [56]. Similarly, in the biological
domain, there has been work on using semi-supervised machine learning techniques to extract
protein names by combining dictionaries with large, full-text corpora [52], but without the
explicit modeling of differences between data domains that we attempt in this thesis. In our
work, we take advantage of the fact that the source and target domains are different sections
of the same structured document and use this fact to develop features that are robust across

10

those different domains.

2.5 Multi-task learning

Whereas in domain adaptation the set of possible labels for our learning task, Y , is held
constant between source and target data, in the multi-task setting this label set, or task,
is allowed to vary between the source task and target task [2, 14, 30, 54, 65]. Expanding on
the example from Section 2.1, this would be like using encyclopedia articles labeled with
personal names in order to train an extractor to find place names in those same types of
articles. Again, there is an obvious overlap between these two learning problems and the goal
of multi-task learning is to investigate how best to characterize and exploit this similarity.
More nefariously, not only are the labels themselves allowed to change, but also the intended
semantics of those labels. For example, the two semantically distinct problems of labeling
tokens as people or places can both be represented by the same binary labeling scheme.

Although there seems to be a clear formal distinction between domain adaptation and multi-
task learning, in this work we tend to consider them in much the same way. Our thesis’s
goal is to find robust ways of learning using as many different sources of data as we have
available. Just as the data we use can come from many related domains, so too our labels
(where they are available) are allowed to refer to a number of distinct, though inter-related
tasks. Thus, for much of this thesis we will use the term ‘task’ (or alternately, setting) to
refer both to the distribution from which our training and test data are drawn and the set
of labels which our learning is trying to predict.

2.6 Semi-supervised learning

Analogously to multi-task learning, where we try to make use of data with labels related to
our source task, in the semi-supervised setting we try to make use of data with no labels
at all [1, 19, 63]. Indeed, in the multi-task framework, any data for which all labels for all
tasks are not available can be considered, in some sense, semi-supervised. In this way, as
presented in Figure 1, we consider semi-supervised learning an extra dimension of the robust
learning framework that one can combine with an existing technique by making use of what
unlabeled data is available. In the supervised setting, the data is usually segmented into
two disjoint subsets: the training set (Xtrain, Ytrain) = {(x1, y1) · · · , (xN , yN)}, which can be
used for training, and the test set Xtest = (x1, · · · , xM), for which labels are not available at
training time. In the semi-supervised setting [66], the training data is supplemented with a
set of auxiliary data, Xaux = (x1, · · · , xP), for which no corresponding labels are provided.
When using semi-supervised techniques for transfer learning, the distribution from which
this unlabeled auxiliary data is drawn is allowed to vary.

11

Table 1: Learning settings are summarized by the type of auxiliary and test data used.
For all settings we assume (Xsource

train , Y source
train) is available at training time, while Ytest is

unknown. Settings for which we have run experiments are marked in bold (c.f. Table 4).

Natural name for learning setting
Auxiliary data Test data

Domain Labels Domain Xtest

Inductive learning - - Dsource unseen
Semi-supervised inductive learning Dsource unseen Dsource unseen
Transductive learning - - Dsource seen
Transfer learning - - Dtarget unseen
Inductive transfer learning Dtarget seen Dtarget unseen
Semi-supervised inductive transfer learning Dsource unseen Dtarget unseen
Transductive transfer learning - - Dtarget seen
Supervised Transductive transfer learning Dtarget seen Dtarget seen
Relaxed Transductive transfer learning1 - - Dtarget seen
Semi-supervised transductive transfer learning Dsource unseen Dtarget seen
1 A relaxation of transductive transfer learning in which proportions of labels in the

target data is known at training time.

2.7 Non-transfer robustness

Despite recent interest in and research into the problems of transfer learning as such, the idea
of robust learning itself is not a new one. Feature selection has proved a very effective means
of generating robust learners, especially when regularized for sparsity, as in the case of lasso
and least angles regression [25,58]; or when the features are designed to succinctly summarize
the relevant information contained in a dataset, as in principal components analysis [39]
and mutual information techniques [64]; or when they are engineered to be resilient to
deletion [31]. Researchers have also tried engineering and selecting features themselves that
they believe will be robust to noise and shifts in the data [33]. Relatedly, a whole range of
expectation maximization (EM) techniques have been developed for learning in situations
where not all relevant information is available [24,29]. In this thesis we build on many these
techniques, combining and extending them where necessary.

2.8 Examples of transfer learning settings & techniques

In the first two sections below (§2.8.1-2.8.2), we introduce and discuss several examples of
learning across the spectrum of transfer problems. These problems vary with respect to
what labels and data are available from the source and target domains at train time. They
are also summarized in Table 1 for the reader’s convenience. Later, we survey some popular
approaches to these types of problems (§2.8.3-2.8.5), and then present some comparative
results to make the algorithms’ relative strengths and weaknesses more concrete (§2.8.6,

12

Table 4). Please see our ICDM 2007 paper for a more thorough treatment of these algorithms
and their performances [4].

2.8.1 Inductive learning

In the paradigm of inductive learning, (Xtrain, Ytrain) are known, while both Xtest and Ytest are
completely hidden during training time. In the case of semi-supervised inductive learning [32,
53,66], the learner is also provided with auxiliary unlabeled data Xauxiliary, that is not part of
the test set. It has been noted that such auxiliary data typically helps boost the performance
of the classifier significantly.

2.8.2 Transductive learning

Another setting that is closely related to semi-supervised learning is transductive learning [36,
38, 59], in which Xtest (but, importantly, not Ytest), is known at training time. That is, the
learning algorithm knows exactly which examples it will be evaluated on after training. This
can be a great asset to the algorithm, allowing it to shape its decision function to match and
exploit the properties seen in Xtest. One can think of transductive learning as a special case
of semi-supervised learning in which Xauxiliary = Xtest.

In the three cases discussed above, Xtest and Xtrain are both assumed to have been drawn
from the same distribution, D. As mentioned previously, however, we are more interested in
the case where these distributions are allowed to differ, that is, the transfer learning setting.
One of the first formulations of the transfer learning problem was presented over 10 years
ago by Thrun [57]. More recently there has been a focus on using source data to learn
various types of priors for the target data [50]. Other techniques have tried to quantify the
generalizability of certain features across domains [23, 35], or tried to exploit the common
structure of related problems [7, 10].

Although the case of transfer learning without access to any data drawn from Dtarget is
not completely hopeless [35], in this thesis we choose to focus on extensions to the transfer
learning setting that allow us to capture some information about Dtarget. One obvious
such setting is inductive transfer learning where we also provide a few auxiliary labeled
data (X target

auxiliary, Y
target
auxiliary) from the target domain in addition to the labeled data from the

source domain. Due to the presence of labeled target data, this method could also be called
supervised transfer learning and is the most common setting used by researchers in transfer
learning today.

There has also been work on transductive transfer learning, where there is no auxiliary
labeled data in the target domain available for training, but where the unlabeled test set
on the target domain X target

test can be seen during training. Again, due to the lack of labeled
target data, this setting could be considered unsupervised transfer learning. It is important
to point out that transductive learning is orthogonal to transfer learning. That is, one can
have a transductive algorithm that does or does not make the transfer learning assumption,

13

and vice versa. Much of the work in this thesis is inspired by the belief that, although
distinct, these problems are nevertheless intimately related. More specifically, when trying
to solve a transfer problem between two domains or tasks, it seems intuitive that looking
at the possibly unlabeled data of the target domain, or another related task, during training
will improve performance over ignoring this source of information.

We note that the setting of inductive transfer learning, in which labeled data from both source
and target domains are available for training, serves as an upper-bound to the performance
of a learner based on transductive transfer learning, in which no labeled target data is
available. For similar reasons, we considered an additional artificial setting, which we call
relaxed transductive transfer learning, in our experiments. This setting is almost equivalent
to the transductive transfer setting, but the model is allowed to know the proportion of
positive examples in the target domain. Although this technically violates the terms of
unsupervision in transductive transfer learning, in practice estimating this single parameter
over the target domain does not require nearly as much labeled target data as learning all
the parameters of a fully supervised transfer model, and thus serves as a nice compromise
between the two extremes of transduction and supervision. Practically, this proportion is
useful to know for determining thresholds [62] and guaranteeing certain semi-supervised
performance results [11].

These and a few other interesting settings are summarized in Table 1. Note that we only
displayed a small subset of the many possible learning settings.

2.8.3 Naive Bayes classifier

Inductive learning: maximum likelihood estimation

Naive Bayes [43] is one of the most popular and effective generative classifiers for many text-
classification tasks. Like any generative model, its decision rule is given by the posterior
probability of the class y given the example x, given by P (y|x), which is computed using
Bayes’ rule as follows:

P (y|x) =
P (x|θ(y))π(y)∑
y′P (x|θ(y′))π(y′)

(1)

where θ(y) are the class-conditional parameters and π(y) are the prior probabilities. The
naive Bayes model makes the somewhat unrealistic yet practical assumption of conditional-
independence between the features of each example, given its class. That is:

P (x|θ(y)) =
F∏
j=1

P (fj(x)|θj(y)) (2)

In our case, since the features are all binary, we use the Bernoulli distribution to model each
feature as follows:

P (x|θ(y)) =
F∏
j=1

(θj(y))fj(x)(1− θj(y))1−fj(x) (3)

14

where θj(y) can be interpreted as the probability that the feature fj assumes a value 1
given the class y. The Bernoulli parameters θj(y) and π(y) are estimated using Maximum
Likelihood training with the labeled training data (Xtrain, Ytrain) = {(x1, y1), · · · , (xN , yN)}
as below:

θj(y) =

∑N
i=1 fj(xi)δy(yi) + λ∑N

i=1 δy(yi) + 2λ

π(y) =

∑N
i=1 δy(yi)

N
(4)

where δy(yi) = 1 if y = yi and 0 otherwise; and λ is the Laplace smoothing parameter, which
we set to 0.05 in our experiments.

Inductive transfer learning: maximum likelihood estimation with concatenated
data

In the inductive transfer case we concatenate the entire labeled data (Xsource
train , Y source

train) and
(X target

train , Y
target
train) to generate a single training set. Then, we learn the parameters θj(y) and

π(y) using the maximum likelihood estimators shown in the classic supervised case (see
eqn. 4). Although more sophisticated approaches are possible, we tried this algorithm as a
simple baseline.

Transductive transfer learning: source-initialized EM

In the transductive transfer case, (X target
train , Y

target
train) are not available for training, but X target

test is
available at training time. Learning from unlabeled examples in the generative framework is
done typically using the standard Expectation Maximization algorithm [48]. The algorithm
is iterative, and consists of two steps: in the E-step corresponding to the tth iteration, we
compute the posterior probability of each label for all the unlabeled examples w.r.t. the old
parameter values θ

(t)
j (y), π(t)(y) as follows:

∀yP (y|x, θ(t), π(t)) =
P (x|θ(t)(y))π(t)(y)∑
y′ P (x|θ(t)(y′))π(t)(y′)

(5)

In the M-step, we estimate the new parameters θ
(t+1)
j (y), π(t+1)(y) using the posterior prob-

abilities as follows.

θ
(t+1)
j (y) =

∑N
i=1 fj(xi)P (y|xi, θ(t)

j (y))∑N
i=1 P (y|xi, θ(t)

j (y))
(6)

π(t+1)(y) =

∑N
i=1 P (y|xi, θ(t)

j (y))

N
(7)

where N is the number of unlabeled examples available during training. In our case, this is
the size of the set X target

test . The iterations are continued until the likelihood of the unlabeled
data converges to a maximum value. In the completely unsupervised case of the EM algo-
rithm, the model parameters are initialized to random values before starting the iterations.

15

In our case, since we have (Xsource
train , Y source

train) at our disposal, we first do a classic supervised
training of our model using the labeled source data, and initialize the parameters to the
ones learned from the source data, before we start the EM iterations. This encodes the
information available from the source data into the model, while allowing the EM algorithm
to discover its optimal parameters on the target domain.

Relaxed transductive transfer learning: redefining the prior

In the case when the values of the prior probability of each class in the target data is available,
we simply fix π(y) to these values and only estimate θ(y) using eqn. 6 in the M-step of the
EM algorithm.

2.8.4 Maximum entropy

Entropy maximization (MaxEnt) [8,47] is a way of modeling the conditional distribution of
labels given examples. Given a set of training examples Xtrain ≡ {x1, . . . , xN}, their labels
Ytrain ≡ {y1, . . . , yN}, and the set of features F ≡ {f1, . . . , fF}, MaxEnt learns a model
consisting of a set of weights corresponding to each class Λ = {λ1,y...λF,y}y∈{0,1} over the
features so as to maximize the conditional likelihood of the training data, p(Ytrain|Xtrain),
given the model pΛ. In exponential parametric form, this conditional likelihood can be
expressed as:

pΛ(yi = y|xi) =
1

Z(xi)
exp(

F∑
j=1

fj(xi)λj,y) (8)

where Z is the normalization term.

In order to avoid overfitting the training data, these λ’s are often further constrained by the
use of a Gaussian prior [16] with diagonal covariance, N (µ, σ2), which tries to maximize:∑

j,y

log
1√

2πσ2
j,y

exp(−(λj,y − µj,y)2

2σ2
j,y

) (9)

Thus the entire expression being optimized is:

argmax
Λ

N∑
i=1

(
log pΛ(yi|xi)− β

F∑
j

(λj,i − µj,i)2

2σ2
j,i

)
(10)

where β > 0 is a parameter controlling the amount of regularization. Maximizing this
likelihood is equivalent to constraining the joint expectations of each feature and label in the
learned model, EΛ[fj, y], to match the Gaussian-smoothed empirical expectations Etrain[fj, y]

16

as shown below:

Etrain [fj, y] =
1

N

N∑
i

(
fj(xi)δy(yi)

− λj,i − µj,i
σ2
j,i

)
(11)

EΛ [fj, y] =
1

N

N∑
i

fj(xi)PΛ(y|xi) (12)

where δy(yi) = 1 if y = yi and 0 otherwise. In the next few subsections, we will describe how
we adapt the model to various scenarios of transfer learning.

Inductive transfer: Source trained prior models

One recently proposed method [15] for transfer learning in MaxEnt models, which we call
the Chelba model. involves modifying Λ’s regularization term. First a model of the source
domain, Λsource, is learned by training on {Xsource

train , Y source
train }. Then a model of the target

domain is trained over a limited set of labeled target data
{
X target
train , Y

target
train

}
, but instead of

regularizing this Λtarget to be near zero by minimizing ‖Λtarget‖2
2, Λtarget is instead regularized

towards the previously learned source values Λsource by minimizing ‖Λtarget−Λsource‖2
2. Thus

the modified optimization problem is:

argmax
Λtarget

Ntarget
train∑
i=1

log pΛtarget(yi|xi)− β‖Λtarget − Λsource‖2
2 (13)

where N target
train is the number of labeled training examples in the target domain. It should be

noted that this model requires Y target
train in order to learn Λtarget and is therefore a supervised

form of inductive transfer.

Feature space expansion

Another approach to the problem of inductive transfer learning is explored by Daumé [22,
23]. Here the idea is that there are certain features that are common between different
domains, and others that are particular to one or the other. More specifically, we can
redefine our feature set F as being composed of two distinct subsets F specific

⋃
Fgeneral,

where the conditional distribution of the features in F specific differ between Xsource and
X target, while the features in Fgeneral are identically distributed in the source and target.
Given this assumption, there is an EM-like algorithm [23] for estimating the parameters of
these distributions. There is also a simpler approach [22] of just making a duplicate copy
of each feature in Xsource and X target, so whereas before you had xi = 〈f1(xi)...fF (xi)〉, you
now have

xi = 〈 f1(xi)
specific, f1(xi)

general

...fF (xi)
specific, fF (xi)

general 〉
(14)

17

where specific is source or target respectively, and fj(xi)
specific is just a copy of fj(xi)

general.
The idea is that by expanding the feature space in this way MaxEnt will be able to assign
different weights to different versions of the same feature. If a feature is common in both
domains its general copy will get most of the weight, while its specific copies (f source and
f target) will get less weight, and vice versa.

Conditional random fields (instance structure)

When it comes to actually training a model, we need a learning algorithm that can integrate
and balance the variety of features and disparate sources of information we are trying to
exploit. We used conditional random fields (CRF’s) [41], a generalization of the common
maximum entropy model from the i.i.d. case (where each token is classified in isolation),
to the sequential case (where each token’s classification influences the classification of its
neighbors). This attribute is especially useful in a setting such as domain adaptation, where
we would like to spread high-confidence predictions made on examples resembling the source
domain to lower-confidence predictions of less familiar target domain instances. Similarly,
like maximum entropy models, CRF’s allow great flexibility with respect to the definition
of the model’s features, freeing us from worrying about the relative independence of specific
features.

2.8.5 Support vector machines (SVM)

Support vector machines (SVM’s) [37] take a different approach to the binary classification
problem. Instead of explicitly modeling the conditional distribution of the data and using
these estimates to predict labels, SVMs try to model the data geometrically. Each example
is represented as an F -dimensional real-valued vector of features and is then projected as a
point in F -dimensional space.

The inductive SVM exploits the label information of the training data and fits a discrim-
inative hyperplane between the positively and negatively labeled training examples in this
space, so as to best separate the two classes. This separation is called the margin, and thus
SVMs belong to the margin based approach to classification. This formulation has proven
very successful as inductive SVMs currently have some of the best general performance of
any popular machine learning algorithm.

Inductive SVM

Recall that in the supervised inductive transfer case, we are given the training sets (Xsource
train , Y source

train)
and (X target

train , Y
target
train). Since the SVM does not explicitly model the data distribution, we sim-

ply concatenate the source and target labeled data together and provide the entire data for
training. The hope is that it will improve on an SVM trained purely on labeled source data,
by re-adjusting its hyperplane based on the labeled target data. It is possible to do better
than such a naive approach 1, but we used this as a reasonable baseline.

1For example, one could impose a higher penalty for classification errors on the target data than on the
source data.

18

Transductive SVM

Transduction with SVMs, in contrast to probabilistic models, is quite intuitive. Whereas, in
the supervised case, we tried to fit a hyperplane to best separate the labeled training data,
in the transductive case, we add in unlabeled testing data which we must also separate.
Since we do not know the labels of the testing data, however, we cannot perform a straight
forward margin maximization, as in the supervised case. Instead, one can use an iterative
algorithm [36]. Specifically, a hyperplane is trained on the labeled source data and then used
to classify the unlabeled testing data. One can adjust how confident the hyperplane must be
in its prediction in order to use a pseudo-label during the next phase of training (since there
are no probabilities, large margin values are used as a measure of confidence). The pseudo-
labeled testing data is then, in turn, incorporated in the next round of training. The idea is to
iteratively adjust the hyperplane (by switching presumed pseudo-labels) until it is very con-
fident on most of the testing points, while still performing well on the labeled training points.

Transductive SVMs were originally designed for the case where the training and test sets were
drawn from the same domain. Again, since SVMs do not model the data distribution, it is
not immediately obvious how one would model different distributions in the SVM algorithm.
Hence in this work, we directly test the applicability of transductive SVMs to the transductive
transfer setting.

2.8.6 Comparison of existing techniques

Domain

We now turn to protein name extraction, an interesting problem domain [34,52,60] in which
to compare these methods within various learning settings. In this problem you are given text
related to biological research (usually abstracts, captions, and full body text from biological
journal articles) which is known to contain mentions of protein names. The goal is to identify
which words are part of a protein name mention, and which are not. One major difficulty
is that there is a large variance in how these proteins are mentioned and annotated between
different authors, journals, and sub-disciplines of biology. Because of this variance it is often
difficult to collect a large corpus of truly identically distributed training examples. Instead,
researchers are often faced with heterogeneous sources of data, both for training and testing,
thus violating one of the key assumptions of most standard machine learning algorithms.
Hence the setting of transfer learning is very relevant and appropriate to this problem.

Data and evaluation

Our corpora are abstracts from biological journals coming from two sources: University of
Texas, Austin (UT) [13] and Yapex [27]. Each abstract was tokenized and each token was
hand-labeled as either being part of a protein name or not. We used a standard natural
language toolkit [17] to compute tens of thousands of binary features on each of these to-
kens, encoding such information as capitalization patterns and contextual information of

19

Table 2: Summary of data used in experiments
Corpus name (Abbr.) Abstracts Tokens % Positive

UTexas (UT) 748 216,795 6.6%
Yapex (Y) 200 60,530 15.0%

Yapex-train (YTR) 160 48,417 15.1%
Yapex-test (YTT) 40 12,113 14.5%

Table 3: Training and testing data used in the settings of Inductive learning (I), Inductive Transfer
(IT), Transductive Transfer (TT) and Relaxed Transductive Transfer (RTT). Abbreviations of data
sets are described in Table 2.

Setting Source-train Target-train Target-test

I - YTR YTT
IT UT YTR YTT
TT UT - Y

RTT UT - Y

surrounding words.

Some summary statistics for these data are shown in Table 2. We purposely chose corpora
that differed in two important dimensions: the total amount of data collected and the relative
proportion of positively labeled examples in each dataset. Specifically, UT has over three
times as many tokens as Yapex but has only half the proportion of positively labeled protein
names. This disparity is not uncommon in the domain and could be attributed to differing
ways the data sources were collected and annotated. Specifically, if the protein mention
annotations in Yapex tend to be longer (that is, extend for more tokens) then the proportion
of positively labeled tokens will be higher in Yapex. For all our experiments, we used the
larger UT dataset as our source domain and the smaller Yapex dataset as our target. We
also split the Yapex data into two parts: Yapex-train (YTR) consisting of 80% of the data,
and Yapex-test (YTT), consisting of the remaining 20%.

In Table 3, we display the subsets of data used for various learning settings in our exper-
iments. Note that the transductive methods use different testing data from the inductive
methods. This choice is made deliberately to provide a chance for the classifiers in each set-
ting to achieve their peak performance, i.e., transductive algorithms work best when there is
abundance of unlabeled test data and inductive algorithms work best when there is plenty of
labeled data. However, since the data is slightly different between inductive and transductive
settings, one must use caution in comparing the transductive results to the inductive ones.

Because of the relatively small proportion of positive examples in both the UT and Yapex
datasets, we are more interested in achieving both high precision and recall of protein name
mentions instead of simply maximizing classification accuracy. Since we were dealing with
binary, and not sequential classification, the definition of these measures is straightforward

20

Table 4: Summary of % precision (Prec), recall (Rec), and F1 for regular maximum entropy
(Basic), prior-based regularized MaxEnt (Regularize), and feature expansion MaxEnt (Expand),
inductive SVM (ISVM), transductive SVM (TSVM), Maximum Likelihood Naive Bayes (NB-
ML), and EM based Naive Bayes (NB-EM) models under the conditions of classic induc-
tive learning, (Induction), unsupervised transductive transfer learning, (TransductTransfer),
relaxed transductive transfer, (RelaxTransductTransfer), and supervised inductive transfer
(InductTransfer), as introduced in the previous sections and summarized in Table 1.

Method
Induction TransductTransfer RelaxTransductTransfer InductTransfer

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
MAXIMUM ENTROPY

Basic 85 78 82 75 42 54 65 68 67 81 54 65
Regularize - - - - - - - - - 87 84 85
Expand - - - - - - - - - 84 62 72

SUPPORT VECTOR MACHINES
ISVM 78 58 67 86 40 54 86 40 55 86 52 65
TSVM 68 79 73 86 46 60 72 75 73 86 58 70

NAIVE BAYES
NB-ML 80 93 86 50 81 62 48 85 61 55 84 67
NB-EM - - - 40 84 54 41 82 55 - - -

as summarized below:

accuracy =
of tokens labeled correctly by the model

total # of tokens

precision =
of POS-tokens labeled POS by the model

of tokens labeled POS by the model

recall =
of POS-tokens labeled POS by the model

of POS-tokens

F1 =
2× recall× precision

recall + precision
(15)

We use the F1 measure, which combines precision and recall into one metric, as our main
evaluation measure.

Experiments and results

We assessed the relative performance of these methods on the four different learning settings
described in previous sections. In addition to running the corresponding adaptations of each
model for each of the settings, we did a few additional runs across the settings for purposes of
illustration. For example, we ran the transductive SVM not only on the transductive settings,
but also on the two inductive settings. Note that TSVM, when run on the inductive case
corresponds to transductive learning (see Table 1) and when run on the inductive transfer

21

case, corresponds to the supervised transductive transfer learning in Table 1. There are
other extra runs we did for the purposes of comparison, which will become apparent from
the following discussion.

Table 4 summarizes the results under all four settings. The inductive experiment is dom-
inated by Naive Bayes, achieving an F1 of 86% compared to MaxEnt’s 82% and TSVM’s
73%. This should not be surprising since generative models are known to be robust when
large amount of labeled training data is available.

Moving to the transductive transfer setting causes all three methods’ performances to fall,
but MaxEnt falls most sharply, causing it to lose its entire lead over TSVM. Note that in
this setting, basic MaxEnt and ISVM have equivalent performance of about 54% F1. The
inductive Naive Bayes (using maximum likelihood estimator) proves to the top performer
in this setting. TSVM, on the other-hand, is able to adjust its hyperplane in light of the
transfer test data and stabilize its performance at 60%, even though it is unlabeled, because
it knows where these points lie relative to the labeled training points in feature space. The
transductive version of the naive Bayes (using EM), however, fares worse than its inductive
counterpart. Since EM’s optimization function is the marginal log-likelihood of the test data,
it is not guaranteed to improve the classification performance in some cases.

In the relaxed transductive transfer setting, finally, where the target dataset is still unlabeled
but all algorithms are told the expected proportion of positive examples, TSVM excels.
Again, while MaxEnt is able to make significant use of this information (note the jump to
67% from 54%), it seems TSVM does a better job leveraging the prior knowledge into better
performance. Maximum Likelihood based Naive Bayes, on the other hand loses out. It seems
that the class conditional probability is more critical in naive Bayes than the prior, so tuning
the latter’s value does not have any positive impact on its performance. Also, notice that
the EM based naive Bayes is even worse, repeating the pattern in the transductive transfer
case.

Finally, the last column of Table 4 compares the performance of the three methods for in-
ductive transfer learning: the prior-based regularized maximum entropy method (Regularize,
described in section 2.8.4), and the feature expanding version (Expand, described in section
2.8.4). We can see that both methods handily outperform the transductive transfer methods
described in the second column of Table 4, and for the most part outperform even the relaxed
transductive transfer versions in column three. This should not be surprising given the fact
that the inductive transfer methods can actually see some labeled examples from the target
domain and thus, in the case of MaxEnt, better estimate the conditional expectation of the
features in the target data. Likewise, since they have access to labeled target data, they can
also assess the proportion of positive examples and adjust their decision functions accord-
ingly. What is more surprising, however, is the fact that these methods do not significantly
outperform the inductive learning methods described in the first column of Table 4. This
suggests that these inductive transfer methods are relying almost entirely on their labeled
target data in order to train their classifiers, and are not making full use of the large amount
of labeled source data. One might assume that having access to almost four times as much

22

related data, in the form of the labeled source data, would significantly boost their ability
to classify the target data (this is, after all, one of the stated goals of transfer learning).
Dishearteningly, in this instance, this seems not to be the case. The regularized maximum
entropy model does outperform2 the basic MaxEnt in the inductive setting, but not by as
much as might have been hoped for.

In order to measure how much these inductive transfer methods’ explicit modeling of the
transfer problem was responsible for their performance, we compared them to the baselines
of ISVM, TSVM, MaxEnt and Naive Bayes trained on a simple concatenation of the la-
beled source and target training data. These transfer-agnostic methods clearly benefited
from the addition of labeled target data (as compared to column TransductiveTransfer), yet
still yielded consistently lower F1 than the transfer-aware Regularize and Expand methods,
suggesting that the mere presence of labeled sets of both types (source and target) of data
is not enough to account for the transfer methods’ superior results. Instead, it seems it is
the modeling of the different domains in the transfer problem, even in simple ways, that
provides the extra boost to performance.

Conclusions

These experiments and analysis have shed light on a number of important issues and con-
siderations related to the problems of transduction and transfer learning.

We have seen that in the case of discriminative models, even a small amount of prior knowl-
edge about the target domain can greatly improve performance in a transductive transfer
problem. Generative model is not able to exploit this information. For all these models,
we notice that even large amounts of source data cannot overcome the advantage of having
access to labeled data drawn from the target distribution.

We have also seen the degree to which pseudo-labeling based schemes can improve per-
formance by incorporating the unlabeled structure of the target domain. However, this
improvement is not seen in the generative Naive Bayes model. We believe this is because
discriminative models directly optimize classification accuracy, while the EM based Naive
Bayes model optimizes an unrelated function, namely, the marginal log-likelihood.

Finally, we have seen that the generative Naive Bayes model is robust in the inductive setting
with large amount of labeled data, while the discriminative models are at least as good or
better in the transductive setting. Of the two discriminative models considered, the margin
based SVM seems to adapt better to the unlabeled data.

2Regularize has F1 of 85 vs. MaxEnt ’s 82. Significance was determined by comparing the 99% binomial
confidence intervals for each method’s recall and precision.

23

3 Overall Objective & Preliminary Results

3.1 Overall objective

Our thesis attempts to explore the ways we can relax assumptions and exploit regularities in
order to better solve real-world learning problems. This section introduces three examples of
problems involving violated assumptions, and the solutions we can up with for overcoming
this broken assumptions. Figure 2 shows one way of visualizing the various types of struc-
ture and regularity that can be tapped in solving various learning problems. In this model,
instances x, their labels y, and constituent features F , can be joined in various relation-
ships. For instance, the standard assumption joining instances is that they are all drawn
independently from an identical distribution (i.i.d.). In the problem we face, however, this
assumption is violated as instances (words) are drawn from different sections of a document
(abstract, caption, etc.) and therefore have different distributions within those sections.
Therefore, in this setting the i.i.d. assumption linking the instances to each other (most im-
portantly, linking the training instances to the test instances) is severed, resulting in training
and testing sets of seemingly unrelated instances among which it appears impossible to gen-
eralize. If we exploit a different regularity, however, re-linking the instances to each other in
some way and taking the place of the invalidated i.i.d. assumption (see the top-left cloud in
Figure 2), we are again able to learn and generalize across samples of training and test data.
In this example (further explained in §3.4), the new regularity is the structure of the doc-
ument itself and the distribution of instances across that structure (what we call structural
frequency features) is what ties the examples together. Similarly, when the assumption that
instances share the same set of features fails to hold, we develop a new method for relating
these distinct, though related, features to one another via a natural linguistically-inspired
hierarchy (the bottom cloud in Figure 2). These are the feature hierarchies explained in §3.2.
Finally, the snippets of §3.5 are represented by the upper-right cloud in the diagram, linking
the data not by the distribution of the instances or the features, but rather by their labels.
Thus data that have very different attributes, but similar labels, will be joined together,
while instances that appear to have similar features, but distinct labels, are segregated to
allow for variation between domains.

In the following sections we further introduce and explore these three examples (visually
summarized in Figure 2) and show how they contribute to this thesis’ goal of robust learning
in real-world systems. More detailed treatments can also be found in our ACL 2008 and
CIKM 2008 publications [3, 5].

3.2 Feature hierarchy

By exploiting the hierarchical relationship present in many different natural language feature
spaces, we are able to transfer knowledge across domains, both relating similar features to
one another, while allowing distinct ones to vary across domains, genres and tasks [5].

24

Figure 2: Visualization of the various types of structure used for transfer learning. Dark
lines denote observed variables and relationships, while light lines symbolize unobserved
data. Paths between and among instances, features and labels are conducted via clouds
representing common relationships between these attributes. These paths allow information
to flow from one type of observation in a certain domain to other related, though possibly
distinct types of observations in related domains. For example, knowledge about instance-
label tuple 〈x1, y1〉 can directly inform an observer about another, unseen label, y2, due to
the i.i.d. relationship between x1 and x2 and the stability of p(y|x). Similarly, knowledge of
x1’s value for feature b (F1b) can help you estimate the value for the unobserved F1a if there is
some relationship (as in our hierarchical lexical features example) linking the features to each
other. In much of the work of this thesis these relationships are manifested as external facts
and assumptions, for example, external linguistic knowledge about the hierarchy relating
lexical features to one another, or external biological knowledge constraining which proteins
can occur in which regions of a cell. These external data sources can often provide the
information paths necessary to link various aspects of the data together, allowing us to learn
in complex settings where common assumptions, like i.i.d., may not hold.

25

3

y

x i

i

(1)

(1)

(1)
M

w (1)
1

y

x i

i
(

M

y

x i

i
(

M

(2)

2)

(2)

(3)

3)

(3)

w w (1) w (1) w1 w w w1 w(1)
2 3 4

(2) (2) (2)
2 3

(3) (3)
2

z z

z

1 2

Figure 3: Graphical representation of the hierarchical transfer model.

3.2.1 Hierarchical feature trees

In many NER problems, features are often constructed as a series of transformations of the
input training data, performed in sequence. Thus, if our task is to identify tokens as either
being (O)utside or (I)nside person names, and we are given the labeled sample training
sentence:

O O O O O I
Give the book to Professor Caldwell (16)

one such useful feature might be: Is the token one slot to the left of the current token
Professor? We can represent this symbolically as L.1.Professor where we describe the
whole space of useful features of this form as: {direction = (L)eft, (C)urrent, (R)ight}.{distance
= 1, 2, 3, ...}.{value = Professor, book, ...}. We can conceptualize this structure as a tree,
where each slot in the symbolic name of a feature is a branch and each period between slots
represents another level, going from root to leaf as read left to right. Thus a subsection of
the entire feature tree for the token Caldwell could be drawn as in Figure 4 (zoomed in on

26

LeftToken.*
LeftToken.IsWord.*
LeftToken.IsWord.IsTitle.*
LeftToken.IsWord.IsTitle.equals.*
LeftToken.IsWord.IsTitle.equals.mr

Table 5: A few examples of the feature hierarchy

the section of the tree where the L.1.Professor feature resides).

direction
L

llllllllll
C

R
RRRRRRRRRR

distance
1

llllllllll
2

...
RRRRRRRRRR

value
Professor

llllllllll
book

...
RRRRRRRRRR

true false ...

Figure 4: Graphical representation of a hierarchical feature tree for token Caldwell in
example Sentence 16.

Representing feature spaces with this kind of tree, besides often coinciding with the explicit
language used by common natural language toolkits [17], has the added benefit of allowing
a model to easily back-off, or smooth, to decreasing levels of specificity. For example, the
leaf level of the feature tree for our sample Sentence 16 tells us that the word Professor

is important, with respect to labeling person names, when located one slot to the left of
the current word being classified. This may be useful in the context of an academic corpus,
but might be less useful in a medical domain where the word Professor occurs less often.
Instead, we might want to learn the related feature L.1.Dr. In fact, it might be useful to
generalize across multiple domains the fact that the word immediately preceding the current
word is often important with respect to the named entity status of the current word. This
is easily accomplished by backing up one level from a leaf in the tree structure to its parent,
to represent a class of features such as L.1.*. It has been shown empirically that, while the
significance of particular features might vary between domains and tasks, certain generalized
classes of features retain their importance across domains [44]. By backing-off in this way,
we can use the feature hierarchy as a prior for transferring beliefs about the significance of
entire classes of features across domains and tasks. Some examples illustrating this idea are
shown in Table 5.

27

3.2.2 New model: hierarchical prior model

In this section, we will present a new model that learns simultaneously from multiple do-
mains, by taking advantage of a feature hierarchy.

We will assume that there are D domains on which we are learning simultaneously. Let
there be Md training data in each domain d. For our experiments with non-identically
distributed, independent data, we use conditional random fields (cf. §2.8.4). However, this
model can be extended to any discriminative probabilistic model such as the MaxEnt model.
Let Λ(d) = (λ

(d)
1 , · · · , λ(d)

Fd
) be the parameters of the discriminative model in the domain d

where Fd represents the number of features in the domain d.

Further, we will also assume that the features of different domains share a common hierarchy
represented by a tree T , whose leaf nodes are the features themselves (cf. Figure 4). The
model parameters Λ(d), then, form the parameters of the leaves of this hierarchy. Each non-
leaf node n ∈ non-leaf(T) of the tree is also associated with a hyper-parameter zn. Note
that since the hierarchy is a tree, each node n has only one parent, represented by pa(n).
Similarly, we represent the set of children nodes of a node n as ch(n).

The entire graphical model for an example consisting of three domains is shown in Figure 3.
The conditional likelihood of the entire training data (y,x) = {(y(d)

1 ,x
(d)
1), · · · , (y(d)

Md
,x

(d)
Md

)}Dd=1

is given by:

P (y|x,w, z) =

{
D∏
d=1

Md∏
k=1

P (y
(d)
k |x

(d)
k ,Λ(d))

}

×

{
D∏
d=1

Fd∏
f=1

N (λ
(d)
f |zpa(f (d)), 1)

}

×

 ∏
n∈Tnonleaf

N (zn|zpa(n), 1)

(17)

where the terms in the first line of eq. (17) represent the likelihood of data in each domain
given their corresponding model parameters, the second line represents the likelihood of
each model parameter in each domain given the hyper-parameter of its parent in the tree
hierarchy of features and the last term goes over the entire tree T except the leaf nodes.
Note that in the last term, the hyper-parameters are shared across the domains, so there is
no product over d.

We perform a MAP estimation for each model parameter as well as the hyper-parameters.

28

Accordingly, the estimates are given as follows:

λ
(d)
f =

Md∑
i=1

∂

∂λ
(d)
f

(
logP (ydi |x

(d)
i ,Λ(d))

)
+ zpa(f (d))

zn =
zpa(n) +

∑
i∈ch(n)

(λ|z)i

1 + |ch(n)|
(18)

where we used the notation (λ|z)i because node i, the child node of n, could be a parameter
node or a hyper-parameter node depending on the position of the node n in the hierarchy.
Essentially, in this model, the weights of the leaf nodes (model parameters) depend on the
log-likelihood as well as the prior weight of its parent. Additionally, the weight of each
hyper-parameter node in the tree is computed as the average of all its children nodes and
its parent, resulting in a smoothing effect, both up and down the tree.

3.2.3 An approximate hierarchical prior model

The Hierarchical prior model is a theoretically well founded model for transfer learning
through feature hierarchy. However, our preliminary experiments indicated that its perfor-
mance on real-life data sets is not as good as expected. We conjecture that the main reason
for this phenomenon is over-smoothing. In other words, by letting the information propagate
from the leaf nodes in the hierarchy all the way to the root node, the model loses its ability
to discriminate between its features.

As a solution to this problem, we propose an approximate version of this model that weds
ideas from the exact hierarchical prior model and the Chelba model.

As with the Chelba prior method in §2.8.4, this approximate hierarchical method also requires
two distinct data sets, one for training the prior and another for tuning the final weights.
Unlike Chelba, we smooth the weights of the priors using the feature-tree hierarchy presented
in §3.2, like the hierarchical prior model.

For smoothing of each feature weight, we chose to back-off in the tree as little as possible
until we had a large enough sample of prior data (measured as M , the number of subtrees
below the current node) on which to form a reliable estimate of the mean and variance of
each feature or class of features. For example, if the tuning data set is as in Sentence 16,
but the prior contains no instances of the word Professor, then we would back-off and
compute the prior mean and variance on the next higher level in the tree. Thus the prior
for L.1.Professor would be N (mean(L.1.*), variance(L.1.*)), where mean() and variance()
of L.1.* are the sample mean and variance of all the features in the prior dataset that match
the pattern L.1.* – or, put another way, all the siblings of L.1.Professor in the feature tree.
If fewer than M such siblings exist, we continue backing-off, up the tree, until an ancestor
with sufficient descendants is found. A detailed description of the approximate hierarchical
algorithm is shown in Table 6.

29

Input: Dsource = (Xsource
train , Y source

train)
Dtarget = (X target

train , Y
target
train);

Feature sets F source, F target;
Feature Hierarchies Hsource, Htarget

Minimum membership size M
Train CRF using Dsource to obtain
feature weights Λsource

For each feature f ∈ F target
Initialize: node n = f
While (n /∈ Hsource

or |Leaves(Hsource(n))| ≤M)
and n 6= root(Htarget)

n← Pa(Htarget(n))
Compute µf and σf using the sample
{λsourcei | i ∈ Leaves(Hsource(n))}

Train Gaussian prior CRF using Dtarget as data
and {µf} and {σf} as Gaussian prior parameters.
Output:Parameters of the new CRF Λtarget.

Table 6: Algorithm for approximate hierarchical prior: Pa(Hsource(n)) is the parent of node
n in feature hierarchy Hsource; |Leaves(Hsource(n))| indicates the number of leaf nodes (basic
features) under a node n in the hierarchy Hsource.

It is important to note that this smoothed tree is an approximation of the exact model
presented in §3.2.2 and thus an important parameter of this method in practice is the degree
to which one chooses to smooth up or down the tree. One of the benefits of this model is that
the semantics of the hierarchy (how to define a feature, a parent, how and when to back-off
and up the tree, etc.) can be specified by the user, in reference to the specific datasets and
tasks under consideration. For our experiments, the semantics of the tree are as presented
in §3.2.1.

The Chelba method can be thought of as a hierarchical prior in which no smoothing is
performed on the tree at all. Only the leaf nodes of the prior’s feature tree are considered,
and, if no match can be found between the tuning and prior’s training datasets’ features, a
N (0, 1) prior is used instead. However, in the new approximate hierarchical model, even if
a certain feature in the tuning dataset does not have an analog in the training dataset, we
can always back-off until an appropriate match is found, even to the level of the root.

Henceforth, we will use only the approximate hierarchical model in our experiments and
discussion.

30

Table 7: Summary of data used in experiments
Corpus Genre Task

UTexas Bio Protein
Yapex Bio Protein
MUC6 News Person
MUC7 News Person

CSPACE E-mail Person

3.3 Investigation of hierarchical feature models

3.3.1 Data, domains and tasks

For our investigations into hierarchical feature models, we chose five different corpora (sum-
marized in Table 7). Although each corpus can be considered its own domain (due to varia-
tions in annotation standards, specific task, date of collection, etc), they can also be roughly
grouped into three different genres. These are: abstracts from biological journals [UT [13],
Yapex [27]]; news articles [MUC6 [26], MUC7 [12]]; and personal e-mails [CSPACE [40]].
Each corpus, depending on its genre, is labeled with one of two name-finding tasks :

• protein names in biological abstracts
• person names in news articles and e-mails

We chose this array of corpora so that we could evaluate our hierarchical prior’s ability to
generalize across and incorporate information from a variety of domains, genres and tasks.

In each case, each item (abstract, article or e-mail) was tokenized and each token was hand-
labeled as either being part of a name (protein or person) or not, respectively. We used a
standard natural language toolkit [17] to compute tens of thousands of binary features on
each of these tokens, encoding such information as capitalization patterns and contextual
information from surrounding words. This toolkit produces features of the type described
in §3.2.1 and thus was amenable to our hierarchical prior model. In particular, we chose
to use the simplest default out-of-the-box feature generator and purposefully did not use
specifically engineered features, dictionaries, or other techniques commonly employed to
boost performance on such tasks. The goal of our experiments was to see to what degree
named entity recognition problems naturally conformed to hierarchical methods, and not
just to achieve the highest performance possible.

3.3.2 Experiments & results

We evaluated the performance of various transfer learning methods on the data and tasks
described in §3.3.1. Specifically, we compared our approximate hierarchical prior model
(HIER), implemented as a CRF, against three baselines:

• GAUSS: CRF model tuned on a single domain’s data, using a standard N (0, 1) prior
• CAT: CRF model tuned on a concatenation of multiple domains’ data, using a N (0, 1)

31

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

F
1

Percent of target-domain data used for tuning

Intra-genre transfer performance evaluated on MUC6

(a) GAUSS

(b) CAT

(c) HIER: MUC6+7 prior

(d) CHELBA: MUC6+7 prior

Figure 5: Adding a relevant HIER prior helps compared to the GAUSS baseline ((c) > (a)),
while simply CAT’ing or using CHELBA can hurt ((d) ≈ (b) < (a), except with very little
data), and never beats HIER ((c) > (b) ≈ (d)). All models were tuned on MUC6 except
CAT (b), tuned on MUC6+7.

prior
• CHELBA: CRF model tuned on one domain’s data, using a prior trained on a different,

related domain’s data (cf. §2.8.4)

We use token-level F1 as our main evaluation measure, combining precision and recall into
one metric.

3.3.3 Intra-genre, same-task transfer learning

Figure 5 shows the results of an experiment in learning to recognize person names in MUC6
news articles. In this experiment we examined the effect of adding extra data from a different,
but related domain from the same genre, namely, MUC7. Line a shows the F1 performance
of a CRF model tuned only on the target MUC6 domain (GAUSS) across a range of tuning
data sizes. Line b shows the same experiment, but this time the CRF model has been tuned
on a dataset comprised of a simple concatenation of the training MUC6 data from (a),
along with a different training set from MUC7 (CAT). We can see that adding extra data in
this way, though the data is closely related both in domain and task, has actually hurt the
performance of our recognizer for training sizes of moderate to large size. This is most likely
because, although the MUC6 and MUC7 datasets are closely related, they are still drawn
from different distributions and thus cannot be intermingled indiscriminately. Line c shows
the same combination of MUC6 and MUC7, only this time the datasets have been combined
using the HIER prior. In this case, the performance actually does improve, both with respect
to the single-dataset trained baseline (a) and the naively trained double-dataset (b). Finally,
line d shows the results of the CHELBA prior. Curiously, though the domains are closely
related, it does more poorly than even the non-transfer GAUSS. One possible explanation

32

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100

F
1

Percent of target-domain data used for tuning

Inter-genre transfer performance evaluated on MUC6

(e) HIER: MUC6+7 prior

(f) CAT: tuned on all domains

(g) HIER: all domains prior

(h) CHELBA: all domains prior

Figure 6: Transfer aware priors CHELBA and HIER effectively filter irrelevant data. Adding
more irrelevant data to the priors doesn’t hurt ((e) ≈ (g) ≈ (h)), while simply CAT’ing it,
in this case, is disastrous ((f) << (e). All models were tuned on MUC6 except CAT (f),
tuned on all domains.

is that, although much of the vocabulary is shared across domains, the interpretation of
the features of these words may differ. Since CHELBA doesn’t model the hierarchy among
features like HIER, it is unable to smooth away these discrepancies. In contrast, we see that
our HIER prior is able to successfully combine the relevant parts of data across domains
while filtering the irrelevant, and possibly detrimental, ones. This experiment was repeated
for other sets of intra-genre tasks, and the results are summarized in §3.3.5.

3.3.4 Inter-genre, multi-task transfer learning

In Figure 6 we see that the properties of the hierarchical prior hold even when transferring
across tasks. Here again we are trying to learn to recognize person names in MUC6 e-mails,
but this time, instead of adding only other datasets similarly labeled with person names, we
are additionally adding biological corpora (UT & YAPEX), labeled not with person names
but with protein names instead, along with the CSPACE e-mail and MUC7 news article
corpora. The robustness of our prior prevents a model trained on all five domains (g) from
degrading away from the intra-genre, same-task baseline (e), unlike the model trained on
concatenated data (f). CHELBA (h) performs similarly well in this case, perhaps because
the domains are so different that almost none of the features match between prior and tuning
data, and thus CHELBA backs-off to a standard N (0, 1) prior.

This robustness in the face of less similarly related data is very important since these types
of transfer methods are most useful when one possesses only very little target domain data.
In this situation, it is often difficult to accurately estimate performance and so one would
like assurance than any transfer method being applied will not have negative effects.

33

0

.2

.4

.6

.8

1

0 .2 .4 .6 .8 1

G
A

U
S
S

(F
1)

HIER (F1)

0

.2

.4

.6

.8

1

0 .2 .4 .6 .8 1

C
A

T
(F

1)
HIER (F1)

.4

.6

.8

.4 .6 .8

C
H

E
L

B
A

(F
1)

HIER (F1)

˜

y = x
MUC6@3%

MUC6@6%

MUC6@13%

MUC6@25%

MUC6@50%

MUC6@100%

CSPACE@3%

CSPACE@6%

CSPACE@13%

CSPACE@25%

CSPACE@50%

CSPACE@100%

Figure 7: Comparative performance of baseline methods (GAUSS, CAT, CHELBA) vs.
HIER prior, as trained on nine prior datasets (both pure and concatenated) of various sample
sizes, evaluated on MUC6 and CSPACE datasets. Points below the y = x line indicate HIER
outperforming baselines.

3.3.5 Comparison of HIER prior to baselines

Each scatter plot in Figure 7 shows the relative performance of a baseline method against
HIER. Each point represents the results of two experiments: the y-coordinate is the F1 score
of the baseline method (shown on the y-axis), while the x-coordinate represents the score of
the HIER method in the same experiment. Thus, points lying below the y = x line represent
experiments for which HIER received a higher F1 value than did the baseline. While all three
plots show HIER outperforming each of the three baselines, not surprisingly, the non-transfer
GAUSS method suffers the worst, followed by the naive concatenation (CAT) baseline. Both
methods fail to make any explicit distinction between the source and target domains and
thus suffer when the domains differ even slightly from each other. Although the differences
are more subtle, the right-most plot of Figure 7 suggests HIER is likewise able to outperform
the non-hierarchical CHELBA prior in certain transfer scenarios. CHELBA is able to avoid
suffering as much as the other baselines when faced with large difference between domains,
but is still unable to capture as many dependencies between domains as HIER.

3.3.6 Conclusions: hierarchical feature models

In this work we have introduced hierarchical feature tree priors for use in transfer learning
on named entity extraction tasks. We have provided evidence that motivates these models
on intuitive, theoretical and empirical grounds, and have gone on to demonstrate their
effectiveness in relation to other, competitive transfer methods. Specifically, we have shown

34

that hierarchical priors allow the user enough flexibility to customize their semantics to a
specific problem, while providing enough structure to resist unintended negative effects when
used inappropriately. Thus hierarchical priors seem a natural, effective and robust choice for
transferring learning across NER datasets and tasks.

Other techniques have tried to quantify the generalizability of certain features across do-
mains [23, 35], or tried to exploit the common structure of related problems [7, 51]. Most
of this prior work deals with supervised transfer learning, and thus requires labeled source
domain data, though there are examples of unsupervised [4], semi-supervised [10, 32], and
transductive approaches [56].

Recent work using so-called meta-level priors to transfer information across tasks [42], while
related, does not take into explicit account the hierarchical structure of these meta-level
features often found in NLP tasks. Daumé allows an extra degree of freedom among the
features of his domains, implicitly creating a two-level feature hierarchy with one branch for
general features, and another for domain specific ones, but does not extend his hierarchy
further [22]). Similarly, work on hierarchical penalization [55] in two-level trees (concurrent
with our ACL paper [5]) tries to produce models that are parsimonious with respect to
a relatively small number of groups of variables as structured by the tree, as opposed to
transferring knowledge between and among the branches of the tree themselves, as in our
transfer setting.

3.4 Structural frequency features

By modeling the distribution of instances across various related domains in a single unified
feature space, structural frequency features are able to combine these disparate source of
information in order to create a stronger learner [3].

3.4.1 Lexical features

Most modern information extraction systems rely on some kind of representation, usually
a set of features, that distills the document into a form the algorithm can interpret and
manipulate. The exact form of these features is a vital component of the overall system,
balancing the complexity of a rich representation with the parsimony of an insightful view
of the domain and problem being solved. For named entity recognition, lexical features,
which try to capture patterns of words within the text of a document, are one of the most
common, and intuitive, types of these representations. Generally, a lexical feature is a
function of a word and its context. The specific definition of this function may vary widely
across domains and implementations. In our setting, each lexical feature is a boolean function
over a token in a document representing the value and morphology of that token and its
neighbors. For example, given the sentence fragment from a caption of a biological paper:
‘Figure 4: Tyrosine phosphorylation...’, some lexical features for the token ‘Tyrosine’ would
look like:

35

CurrentToken.isWord.Tyrosine
CurrentToken.charPattern.Xx
CurrentToken.endsWith.ine
Right1Token.endsWith.ation
Left1Token.isWord.:
Left3Token.isWord.Figure

Table 8: Lexical features for token ‘Tyrosine’ in sample caption: ‘Figure 4: Tyrosine phos-
phorylation...’.

Notice that, although these features are defined with respect to a certain current token,
‘Tyrosine’, they also take into account the context of that word in the document. In this
example, if we knew that this occurrence of ‘Tyrosine’ was labeled as a protein, the fact that
the token immediately to the left of the current token was a semi-colon (Left1Token.isWord.:)
might be useful in predicting whether other, heretofore unseen tokens besides ‘Tyrosine’, that
also happen to be preceded by a semi-colon, might also be proteins.

Since each word in one’s vocabulary may constitute a feature (e.g., CurrentToken.isWord.A,
CurrentToken.isWord.B, ...), it is not uncommon to have tens or even hundreds of thousands
of such binary lexical features defined in one’s feature space. The benefit of this is that such
a large feature space can richly represent most any training set. The examples in Table 8
also include domain-specific features such as ‘CurrentToken.endsWith.ine’ (a common suffix
for amino-acids). These custom features allow the researcher to bias his feature space to-
wards specific features that he feels might be more informative with respect to his particular
problem domain. While this specificity may be advantageous for an expert dealing with a
limited domain, it can become a liability when that domain is uncertain, or even variable,
as is the case in our transfer learning setting.

For instance, while the occurrence of a semi-colon or the word ‘Figure’ may be very infor-
mative in terms of identifying words as proteins in the captions of papers, if our extractor
is trained only on abstracts it may never see those types of features. Indeed, since lexical
features are merely functions of the specific sections of text seen during training, they are
unable to capture information residing in other sections of the document which may prove
useful. Even in the semi-supervised case where the learning algorithm has access to unla-
beled target domain data, lexical features are unable to take advantage of this information
since there is no way to relate the unlabeled tokens to the labeled ones.

Lexical features thus provide a valuable, but brittle, representation of the training data. Our
work augments these rich, though domain-specific, lexical features with other non-lexical
features based on the internal structure of a document, contributing another view of the
data that is more robust to changes in the domain. We show that combining these types of
domain-specific and domain-robust features produces a classifier that performs well across
domains.

36

3.4.2 Document structure

We begin by highlighting the common observation that most documents are written with
some kind of internal structure. For instance, the biological papers we studied in this exper-
iment (like most academic papers) can be divided into three sections:

• Abstract: summarizing, at a high level, the main points of the paper such as the
problem, contribution, and results.

• Caption: summarizing the figure it is attached to. These are especially important
in biological papers where most important results are represented graphically. Unlike
computer science papers, which usually have brief captions, in our corpus the average
caption was over 125 words long, thus supporting our belief that they might contain
useful information for our NER task.

• Full text: the main text of a paper, that is, everything else besides the abstract and
captions.

Figure 8: Sample biology paper. Each large black box represents a different subsection of
the document’s structure: abstract, caption and full text. Each small highlighted color box
represents a different type of information: full protein name (red), abbreviated protein name
(green), parenthetical abbreviated protein name (blue), non-protein parentheticals (brown),
genes (orange), and measurement units (purple).

An example of such a structured document is provided in Figure 8. In this figure we see the
various ways a protein can be referred to throughout the sections of a document. Notice how

37

the distribution of these types of occurrences varies across the structure of the document.
For instance, full name references (red) do not appear in the caption, while non-protein
parentheticals (brown) do not appear in the abstract. This is similar to the complex way the
instances in Figure 2 are related to each other: not through a common distribution (as in the
i.i.d. case), but rather through another mediating relationship (in this case, the structural
features relating the occurrence of tokens across the common structure of a document).
Here we see the importance of explicitly modeling the difference between the source and
target domains: if one were to näıvely train a purely lexical feature based extractor on the
abstracts and try to apply it to the captions, the extractor might be confused by the non-
protein parentheticals, having never seen them in its training data. Likewise, it might waste
significant probability mass on features representing the unabbreviated form of protein names
which it might never see in its caption test data. It is important to note that in order to
support this interpretation of the data we have to make the so-called one-sense-per-discourse
assumption [28], namely, that tokens in one section of a document have the same meaning as
identical tokens in other sections of the same document. This can be visualized as another
layer of edges in Figure 2, lining occurrences of words across sections of a document, and
ultimately, bridging the gap between the source and target domains.

Since we have no labeled target domain data, however, it is not obvious how we might amend
or supplement our source domain training data so as to avoid these problems. The key insight
is the fact that these domains, while distinct, are nevertheless related by the overarching
structure of the documents in which they reside. For instance, while unabbreviated protein
names never appear in the caption, and non-protein parentheticals never appear in the
abstract, both of these occur in the full text of the paper. Thus, our goal is to find some
class of features that can relate these different types of occurrences together across the
differing subsections of a document’s structure. We will achieve this by leveraging the one-
sense-per-discourse assumption and our knowledge about our documents’ structure to create
two new types of features:

• Structural frequency features: Informative with respect to protein extraction, but
make repeated occurrences of the same token in different sections look similar.

• Snippets: Pseudo-examples that push a learned classifier towards being consistent
with the one-sense-per-discourse assumption.

3.4.3 Structural frequency features

Structural frequency features, like lexical features, are simply functions of tokens in context.
Unlike purely lexical features, however, structural frequency features are able to leverage the
occurrence of tokens across all sections of a document, including the unlabeled captions and
full text. The idea is to leverage the fact that different types of tokens (e.g., unabbreviated
protein names, non-protein parentheticals, etc.) occur with different frequencies in different
sections of a document. In the example from Figure 8 in §3.4.2, we noticed that non-protein

38

parentheticals occurred quite often in the caption, but not at all in the abstract. While this
seems informative, in our setting, unfortunately, we do not have labels for the caption data.
We are therefore unable to make a distinction between protein and non-protein parentheticals
in the caption section of the document. We can, however, make such a distinction in the
abstract section of the same document, for which we do have labels. Thus, if we see a
parenthesized token in a caption, and see the same token parenthesized in the abstract, we
might be able to transfer that abstract token’s label to the unlabeled caption occurrence.
In this respect, these structural frequency features provide the links necessary to perform a
kind of label propagation across the subsections of a document [67].

Given our previously stated one-sense-per-discourse assumption, we now have a means of
transferring our labels across the different unlabeled sections of a document and may have
a useful, non-transfer, semi-supervised learning model. Our ultimate goal, however, is semi-
supervised domain adaptation, and these structural features, as described thus far, still lack a
way of ensuring they will be robust across shifts in domain. The key to addressing that issue
is to consider the occurrence of tokens not in isolation within each subsection of a document,
but rather jointly across sections. For instance, in Figure 8 we see the token ‘(lane *)’
occurs quite often in the caption, but never in the full text. In fact, there are many such
non-proteins that only ever appear in the caption section of the document. In contrast, the
token ’M-CSF’ occurs with high frequency across all three sections of the document. Indeed,
there are relatively few proteins that do not occur in the abstract of a paper. It seems we
can use the relative distribution of tokens across the different sections of a document, in and
of itself and without any lexical information, as a signal of that token’s likelihood of being
a protein. This makes sense, since authors are conveying different kinds of information, in
different ways, across the various sections of a document and so are not equally likely to
mention a protein, in the same particular way, across the entire document.

Times in: Log prob. in: Log cond. prob. in:
Word A C F A C F P(C|A) P(F|A)

‘M-CSF’ 3 3 4 -1.84 -1.61 -3.10 -1.20 -1.12
‘macrophage’ 2 0 1 -2.01 -Inf -3.70 -Inf -1.72

‘(M-CSF)’ 1 0 1 -2.30 -Inf -3.70 -Inf -1.72
‘PU.1’ 5 2 0 -1.61 -1.78 -Inf -1.37 -Inf
‘kDa’ 0 0 1 -Inf -Inf -3.70 Never Never

Table 9: Sample structural frequency features for specific tokens in example paper from
Figure 8, as distributed across the (A)bstract, (C)aptions and (F)ull text. Log probabilities
are computed assuming the following number of total tokens are found in each section of the
paper: A = 206, C = 121, F = 4, 971, C|A = 47, F |A = 53.

Specifically, for each unique word-type in a document, we counted the number of times it
appeared in each of the different sections of that document (for example, the word-type ‘M-

39

CSF’ occurs three times in the abstract, four times in the full text, and three times in the
caption of the example in Figure 8). We then normalized these counts by the total number of
tokens in a given section to come up with an empirical probability of a word-type occurring
in a particular section. We also computed the conditional forms of these features, that is, we
counted the number of times a token appeared in section x, given that it also appeared in
section y, again normalizing to form an empirical probability distribution. Continuing our
example, the token ‘macrophage’ never occurs in the caption and thus, although the token
does occur in the abstract, p(word occurring in caption|word occurs in abstract) is still zero
(see Table 9 for more examples). These conditional structural frequency features allow us
to characterize the particular distribution patterns that different types of words have across
the sections of a document. In particular, we might be interested in modeling things like
p(word is a protein|word appears in caption but not in abstract). Figures 9 and 10 show the
distribution of two such features across our training data.

Figure 9: Histogram of the number of occurrences of protein (left) and non-protein (right)
words with the given log normalized probability of appearing in full text, given that they
also appear in an article’s abstract.

Figure 9 shows a histogram of the number of times words labeled in the abstract as proteins
(left) and non-proteins (right) occurred with a given log normalized probability in the docu-
ment’s full text, given that it also appeared (at least once) in the same document’s abstract
section. Since these probabilities are plotted on the log scale, any zero values (i.e., words that
appear in abstracts but never in the full text), will be assigned to the bin at negative infinity.
The lack of instances at negative infinity in the left plot is evidence that, if a protein is in
an abstract, it is also always in the full text at least once. But this is not so for non-proteins
– the large spike on the left side of the right plot shows a large number of non-proteins that
appear in abstracts but never in the full text. Also notice the general right-shift of the entire
distribution in the left plot, indicating an overall higher proportion of proteins occurring in
full-text, given that they appear in an abstract, as compared to non-proteins.

Figure 10 shows a similar distribution, only this time the conditional structural frequency
feature is measuring the likelihood of a word occurring in the captions of a paper, given that
it appeared in the abstract. Notice, again, the left spike in the non-protein histogram on

40

Figure 10: Histogram of the number of occurrences of protein (left) and non-protein (right)
words with the given log normalized probability of appearing in captions, given that they
also appear in an article’s abstract.

the right, indicating that a large number of non-proteins never appear in article’s captions,
despite appearing in its abstract. In contrast, the higher peaks to the right of the protein
plot on the left show a much higher proportion of proteins appearing in captions, given they
also appear in the abstract.

These plots clearly demonstrate a significant difference in the distribution of protein and
non-protein tokens across the various subsections (abstract, captions, and full text) of a
document’s structure and suggest these structural frequency features may be informative
with respect to identifying and extracting proteins. Thus, at training time, we compute these
structural frequency features for each token in our labeled training abstracts. Since counting
token occurrences across document sections, however, does not require labels itself, we can
freely use all the unlabeled text from the papers we have to calculate the features. Likewise,
by leveraging the one-sense-per-discourse assumption, we can attach the word-type’s label
(found in the abstract) to each of these features defined across the various sections of the
document. In the end, we are left with a semi-supervised intra-document representation of
the labeled abstract data that is, due to its cross structural nature robust to shifts across
the various document section domains.

3.5 Snippets

Although structural frequency features provide domain-robust signals to our extractor, they
do not directly ameliorate the domain-brittleness of the lexical features discussed in §3.4.1.
To address this issue, we introduce a kind of pseudo-data we call snippets. Snippets are
tokens or short phrases taken from one of the unlabeled sections of a document and added to
the training data, having been automatically positively or negatively labeled by some high
confidence method [3]. Together, they help make the target distribution ‘look’ more like the
source distribution with respect to the characteristics they share, while reshaping the target

41

distribution away from the source distribution in regards to the ways in which they differ.

3.5.1 Positive snippets

Positive snippets (i.e., snippets automatically labeled as positive examples) are an attempt
to leverage the overlap between and across domains, by taking high confidence examples from
one domain and transferring them to the other. In this sense, it is related to co-training [11].
Specifically, positive snippets leverage the one-meaning-per-discourse assumption (which we
again rely upon due to our lack of labeled target data). The unlabeled target sections of
a document are searched for tokens that match positively labeled tokens from the labeled
source sections. Any matching instances are copied, along with a bit of neighboring context,
into the training data, with the matching tokens labeled positive, and their context (where it
does not match a protein name observed in the abstract) labeled negative, the idea being that
this surrounding context will help inform the extractor of the differences in the distribution
of lexical features in the target domain. Since our goal is to train an extractor that will be
robust to shifts from source to target domain, we would like to introduce some examples of
the target domain into the source domain training data to make it look more like the target
domain. Since we don’t have labels for the target domain, however, we have to rely on this
high-confidence token matching heuristic.

3.5.2 Negative snippets

Similarly, negative snippets (i.e., snippets automatically labeled as negative examples)
provide examples of tokens which may appear to be proteins when viewed with respect to
the source domain, but are in fact not proteins in the target domain. These must rely on some
form of prior knowledge about the target domain for their high-confidence automatic labeling,
perhaps some kind of extractor previously trained for the target domain. For example, a
researcher may have previously trained an extractor to identify tokens in captions that refer
to specific panel locations in the accompanying image (e.g., the token ‘(B)’ in Figure 8’s
caption). We call these types of references image pointers [18]. Although this kind of token
pattern may look like a parenthetical protein mention if seen in an abstract, since we have an
existing extractor able to identify it as an image pointer in captions (and thus, by assumed
mutual exclusion, not a protein), we are able to add all occurrences in a paper’s captions
of similarly identified image pointers (labeled as negative) to that paper’s labeled training
data. A similar process can be followed for all kinds of high-confidence negative labels, such
as measurement units, bibliographic citations, and various stoplists.

In this way, snippets allow us to use our unlabeled target data not just to add new inter-
domain information (as with structural frequency features), but also, perhaps as importantly,
to adjust and augment the distribution of existing source domain derived lexical features to
make them more in accord with the target domain, ultimately producing extractors that are
more robust to changes between training and test domains.

42

3.6 Investigation of structural frequency and snippet models

3.6.1 Data

Our training data for these experiments was drawn from two sources:

• GENIA: a corpus of Medline abstracts with each token annotated as to whether it is
a protein names or not [49]

• PubMed Central (PMC): a free, on-line archive of biological publications [46]

Since our methods rely on having access to a document’s labeled abstract along with the
unlabeled captions and full text, and GENIA only provided labeled abstracts, we had to
search PMC for the corresponding full text, where available. Of GENIA’s 1,999 labeled
abstracts, we were able to find the corresponding full article text (in PDF format) for 303 of
them on PMC. These PDF’s were (noisily) converted to text3 and segmented into abstract,
captions, and full text using automated tools. Figure 8 shows an example of one such
segmented PDF.

Of these 303 papers, consisting of abstracts labeled with protein names along with corre-
sponding unlabeled captions and full text, 218 (consisting of over 1.5 million tokens) were
used for training, and 85 (almost 640,000 tokens) were used for testing.

3.6.2 Experiment

Experimentally, we used ablation studies to assess the amount of information our novel
features:

• Structural frequency features (FREQ)

• Positive snippets (POS)

• Negative snippets (NEG)

each contribute to the task of protein name extraction, both in the non-transfer (abstract to
abstract) and domain adaptation (abstract to caption) setting. In each case, we trained an
extractor on a version of the training data constructed with the appropriate set of features. In
all experiments we used the Minorthird toolkit to construct the lexical features and perform
the CRF training [17].

3e-PDF PDF to Text Converter v2.1: http://www.e-pdfconverter.com

43

3.6.3 Results

3.6.4 Structural frequency features

Figure 11 compares the performance on held-out abstracts (in terms of precision and recall)
of extractors training only on lexical features (LEX of §3.4.1), only on structural frequency
features (FREQ of §3.4.3), and on a combination of both types of features (LEX+FREQ).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Precision vs Recall

LEX+FREQ
LEX

FREQ

Figure 11: Precision versus recall of extractors trained on only lexical features (LEX), only
structural frequency features (FREQ), and both sets of features (LEX+FREQ).

We can observe that, while the lexically trained model always outperforms the strictly struc-
tural frequency informed model (LEX dominates FREQ), the FREQ model nevertheless
produces a competitive precision-recall curve despite having no access to any lexical infor-
mation. This supports the intuition developed from observing the difference between protein
and non-protein distributions in Figures 9 and 10.

Similarly, the fact that the combined model LEX+FREQ dominates each constituent model
(LEX and FREQ individually) demonstrates that each type of feature (lexical and structural)
is contributing a share of unique information, not represented by the other. This supports
the connection with co-training, proposed in §3.5, by indicating that the feature sets are
somewhat independent with respect to identifying protein names. The fact that their effect
in the combined model is not completely additive suggests they are not wholly independent

44

either.

3.6.5 Non-transfer: abstract to abstract

Table 10 shows the performance of seven different extractors (sorted by F1), each trained on
a unique combination of our proposed features: positive snippets (POS), negative snippets
(NEG), and structural frequency features (FREQ), all along with the standard lexical fea-
tures (LEX). A check mark in a feature’s column means that row’s extractor was provided
with that column’s features at train-time. In this non-transfer experiment, our model labeled
tokens of held-out abstracts as protein or not, and these predictions were automatically eval-
uated with respect to token-level precision, recall and F1 measure using the held-out GENIA
labels for those abstracts.

Model name POS NEG FREQ Prec Rec F1

FULL X X X .738 .673 .704
FREQ X .744 .640 .688
POS FREQ X X .727 .637 .679
POS X .760 .555 .641
POS NEG X X .760 .547 .636
BASE .753 .550 .636
NEG FREQ X X .751 .535 .625

Table 10: Summary of ablation study results for extractors trained on full papers and eval-
uated on abstracts.

From this table we can notice a number of trends. With respect to the baseline model
(BASE) trained only on lexical features, adding positive snippets (POS) doesn’t seem to
help precision or recall much, while adding structural frequency features (FREQ) improves
recall (and thus F1) dramatically. This makes sense, since positive snippets were proposed
as a method of increasing domain-robustness, and these results are for the non-transfer
setting. On the other hand, structural frequency features were proposed as a general purpose
method of using an article’s internal structure to help extract useful information from the
unsupervised sections of the document. In this respect, FREQ features might be expected
to aid in even the non-transfer setting, as they do here. Interestingly, although in isolation,
and even in combination, POS and NEG snippets themselves don’t seem to improve on the
baseline model in the non-transfer setting, when combined with FREQ features (FULL) they
do seem to provide another boost to recall. This may be due to the fact the inter-domain
information implicitly incorporated by the structural frequency features allows the model to
better make use of the cross-domain snippets.

45

We should note that, although this non-transfer, abstract to abstract setting is convenient
(since we can get precise evaluation numbers) and the results encouraging, it is unclear what
they might indicate about performance in the transfer setting.

3.6.6 Transfer: abstract to caption, full vs. baseline

Finally, we present the results of a user study in the domain adaptation setting. We trained
extractors on various combinations of features computed on the training data, and com-
pared them to the full model trained on lexical, structural, positive and negative snippets,
evaluating each with respect to the proteins they predicted in held-out captions. Unlike the
non-transfer setting, however, since we had no labels for any captions, we could not perform
automatic evaluation. Instead, we employed human experts to manually compare the pre-
dictions made by variously constructed extractors and evaluate which they preferred. Using
this method we found that our proposed model (FULL, the joint combination of all three
new feature types: POS, NEG and FREQ) was preferred by users significantly more often
(p < .01, see Table 11) than the baseline model trained only on lexical features.

Figure 12: Screenshot of application used to compare various protein extractors’ performance
on captions in the face of no labeled data.

Figure 12 shows a screenshot of the tool we used to perform these evaluations. In the top-
right, two extractors are being compared: 1A in yellow and 1B in blue (their names have
been blinded from the evaluator). The top-left panel shows the captions of a particular
test article with each extractor’s positive (protein) predictions highlighted in its color, with
green highlights representing tokens on which both extractors predict positive. The bottom

46

panel shows two columns of buttons: 1A’s predictions are on the left, and 1B’s on the right.
Since we are evaluating user preference, only the predictions where the extractors disagree
are shown. For each row (corresponding to a disagreement between extractors) the human
expert clicks the cell of the prediction he prefers: clicking an empty cell in one column
means the user believes the other column’s extractor made a type I (false positive) error,
while clicking a non-empty cell implies the other column’s extractor made a type II (false
negative) error. Each of these judgments can be viewed as the outcome of a paired trial,
and by using a paired t-test, we can assess how the extractors differ along with which the
user prefers, but can’t exactly quantify by how much one has improved with respect to the
other.

Evaluation is an important consideration in semi-supervised domain adaptation, since, by
definition, no labeled test (target domain) data is available. The type of comparative evalu-
ation we performed could be instrumented into various end-user applications (for example,
click-through logs from protein name search engines such as SLIF4) to automatically extract
the necessary user-preference information, thus obviating the need of a special evaluator.

3.6.7 Transfer: abstract to caption, full vs. ablated

Having established that a model based on a combination of our new features (incorporated in
the FULL model) improved user preference over the baseline, purely lexical model, we then
performed an ablation study to ascertain which of these new features (structural frequency
(FREQ), positive snippets (POS), or negative snippets (NEG)) were responsible for the
improvements observed. Table 11 summarizes these results for each ablation considered. In
each such study comparing the full model to a degraded model, the full model was preferred
significantly more often than the ablated model (one-sided paired t-test, p<.01), indicating
that our proposed features are, in fact, useful for unsupervised domain adaptation.

Model Compared to p-value # user labels

FULL BASE 3.6 E-4 182
FULL NEG FREQ 9.9 E-9 78
FULL POS NEG 1.8 E-4 120
FULL POS FREQ 1.1 E-4 46

Table 11: Summary of transfer results for extractors trained on full papers and evaluated on
captions. The preferred model is in bold.

From these results we can further observe that adding POS snippets seems to have a no-
ticeable effect on user preference. This is a nice complement to the result from §3.6.5 which
indicated that POS snippets are not as useful in the non-transfer setting. Indeed, it is the

4http://slif.cbi.cmu.edu/

47

ability of POS snippets to shape the labeled training source data to look more like the target
data that allows the extractors so trained to be robust across shifts in domains. Similar
user preference is seen for the contribution of NEG snippets and FREQ features, indicating
that they too aid in domain-adaptation, both by leveraging unlabeled training data and by
helping to inform the training data with some target domain attributes.

3.6.8 Conclusions: structural frequency features and snippets

In this section we have shown how exploiting structure, in the form of frequency features
and positive and negative snippets, can help in the problem of semi-supervised domain
adaptation. We have defined a new set of features based on structural frequency statistics
and demonstrated their utility in representing inter-domain information drawn from both
supervised and unsupervised sources, in a manner somewhat orthogonal to the traditional
lexically based feature sets. Similarly, we have defined a technique for introducing high-
confidence positively and negatively labeled pseudo examples (snippets) from the target
domain into the source domain, and shown that these too provide a convenient, and effective,
method for producing an extractor that is robust to domain shifts between training and
testing data sets. Finally, through a comparative analysis of each new feature’s contribution
to same-domain and inter-domain information extraction performance, we have discovered
an intriguing relationship between a feature’s utility in the non-transfer and transfer settings.
Along the way, in order to assess our transfer techniques’ performance in the face of a lack
of labeled test data, we have also developed a novel framework for human evaluation that
facilitates statistically interpretable paired testing.

48

4 Proposed Work & Schedule

Given our results thus far (both the assumptions we have been able to drop and the regu-
larities we have been able to exploit) and in light of the ultimate goal of this thesis, making
learned classifiers and extractors more robust by using data (both labeled and unlabeled)
from related domains and tasks and by exploiting stable regularities and complex relation-
ships between different aspects of that data, we are encouraged to explore the following
research tasks:

(I) Since our preliminary work has demonstrated that robustness can be achieved when
we have stable relationships among the various components of a learning task, §4.1
proposes investigations into what other, further stable relationships and regularities
there are to discover and exploit between the many tasks, features, labels and data
available in the biological named entity recognition learning problem (cf. Figure 2).
Similarly, these assumptions we use to tie together different aspects of the data may
come with varying degrees of certainty. For example, how sure are we that an image
pointer can never be protein name (i.e., that they are 100% mutually exclusive)? What
about a measurement unit and a protein name? If these assumptions have different
degrees of certainty, how does that affect the stability of the implied relationships
and, ultimately, a learner’s robustness? Is there a safe way to back off from these
assumptions?

(II) Relatedly, §4.2 seeks to explore how to best make use of the many sources of external
knowledge available related to the tasks of named entity recognition in general and
in the biological domain in particular. Specifically, we plan to focus on integrating
these various external sources of information into the learning process as surrogates
for violated assumptions by leveraging their relationship to the knowledge already
being derived from the data itself. At the same time, we need to ensure that these
relationships between the derived and external data are, in fact, stable across domains
and tasks. For instance, an ontology that knows about yeast proteins should be stable
across different papers that are all mutually concerned with yeast, yet might not be
equally stable across certain subsections of those papers. In contrast, a database that
holds facts regarding entire individual papers should be stable across subsections of
those papers (e.g., abstracts and captions), but not necessarily from one paper to
another.

(III) Finally, §4.3 proposes to combine these techniques and to verify both the existence
of the proposed relationships in a well-constrained domain and these relationships’
ability to contribute to robust learning.

49

4.1 Task I. Cross-task & cross-domain learning

This section is generally concerned with assessing the relationship between the number and
variety of domains and tasks a classifier has been trained on and the classifier’s ultimate
robustness.

4.1.1 Domain adaptation

Given the success of using structural frequency features and snippets to perform domain
adaptation for protein extraction, we would like to see if these techniques generalize to
the extraction of cell-line names under the same inter-domain settings, namely across both
document structure (cellabstract ⇒ cellcaption) and corpora boundaries (cellY apex ⇒ cellUT).
If we have time, we would also like to examine a non-biological setting, perhaps transferring
from news article sources to the blogs that write about them, or from blogs to their comments.

4.1.2 Multi-task learning

Same domain multi-task transfer

The goal of this work is to investigate how much mutual simultaneous learning on different
tasks can aid in developing robust extractors. We propose using abstract data labeled with
proteins to try to predict cell name occurrences in abstracts. As in the protein case, we have
access to abstracts labeled with cell line names and can attempt proteinabstract ⇒ cellabstract
task transfer on the abstract domain. It is important to note that we are focusing on the goal
of using multiple tasks in order to develop stable relationships for mutual robust learning,
and not for pure target-task learning itself. That is, we want to use the relationships between
tasks to improve learning for all tasks, as opposed to simply transferring from one ‘solved’
source task to a separate, as yet unlearned, target task.

In addition to this supervised multi-task transfer we can also try semi-unsupervised multi-
task transfer from labeled proteins to unlabelled cells. Although this seems difficult given
we have no labeled cell training data at all, nevertheless, given the fact we were successful
in a similar unsupervised transfer case from abstracts to captions in the protein domain
adaptation setting, with no labeled captions at all, perhaps we can find a similar result
in the multi-task case by utilizing a regularity relating common structures across different
tasks, analogous to the one-sense-per-discourse assumption that allowed us to tie together
information across different sections of a document. For instance, if, via our source training
data, we can identify proteins, and in addition we have external biological data relating
certain proteins to certain cells, we may be able to use the protein information itself to help
locate cells in the captions.

Domain adaptive multi-task transfer

Similarly, we can examine the seemingly more complex case of multi-task transfer across

50

domains. Specifically, trying to predict cell occurrence in captions given protein occurrence
in abstracts: proteinabstract ⇒ cellcaption transfer. Although this may seem ambitious, I
believe it is worth some investigation.

4.1.3 Parallel labels: image pointers

Parallel labels are labels from other tasks related, but not identical to, the problem domain.
For instance, in the captions of fluorescence microscopy images within biological publications,
parenthetical references to image locations can often appear morphologically similar to par-
enthetical protein name mentions (cf. Figure 8). This can result in false positives. Thus
for example, as we saw with the negative snippets from §3.5.2, if we had a high-confidence
image location extractor (which we call image pointers), we could censor those examples
from our result list, increasing our protein name precision. Other ideas include using image
pointers to determine which section of an image a corresponding caption segment is aligned
with, and using the stable properties of that image to transfer information across captions.
This is related to work previously done for information extraction on the Web [21] that
used the relationships between and amongst different classes of instances to influence their
classification.

4.1.4 Parallel labels: image & experiment type

The images in biological publications can often be categorized by the type of experiment they
depict. For instance, a time-series experiment in which a process or treatment is watched
over time might commonly be depicted as a series of nearly identical images arranged in
a sequence. Likewise, the comparison of a gene’s expression across cell types might be
represented as a bar chart. These experiments could be labeled by hand, or inferred from
graphical or textual information [45]. The idea for this work is to classify these images
by their experiment type and use these classifications as parallel labels to aid in NER on
their associated captions. For instance, it may be easier to perform abstract ⇒ caption
domain adaptation only for captions relating to certain types of experiments. Similarly, it
may be easier to transfer among captions that share an experiment type than across those
whose experiment types differ. The general lesson is that the more information a learner
has available (whether in the form of related data, labels, or even predictions) the more
opportunities there are to discover exploitable regularities.

4.2 Task II. Relating external and derived knowledge

4.2.1 External data sources

In addition to the features, labels and structure available directly in a data set, in complex
real-world applications it is often possible to find external sources of data related (if only

51

tangentially) to the learning problem at hand. For instance, in the protein name extraction
problem there is an ontology of words describing gene and gene product attributes and how
they relate to each other [20]. One question is: if two proteins co-occur in a relationship in
this ontology (or some other external source) are they more likely to also co-occur in the
text (or some other internally derived representation), or vice-versa? Another challenge is
to determine when external data sources represent a stable regularity, and then they do not.
This is related to the question of assumption confidence raised in Task I.

4.2.2 Hard & soft labels

A related problem in this area is the different ways hard and soft labels can be used. Hard
labels offer high confidence, high precision predictions (both positive and negative) for
examples but at the cost of being low recall, expensive to build and difficult to maintain.
Examples include specialized dictionaries, gazetteers and stoplists. In contrast, soft labels
are external data sources that are noisy, ambiguous or only partially labeled (perhaps by a
curator, weak learner, or some other mostly automated method). Although this information
seems much weaker than the hard labels above, it is usually much more abundant and easily
acquired. Thus, we are interested to see if we can we still relate this external information to
the internal regularities of the data, and its derived products, in order to allow us to relax
some of our assumptions and improve the robustness of our learning.

4.3 Task III. Combining & verifying techniques

4.3.1 Combining techniques

We can benefit not only from introducing various new sources of information to our problem,
but also by processing and combing these sources in new ways. For example, we may have a
noisy external source of potential cell names which we want to use to help reduce the false-
positives of cells identified as protein names. Combining techniques can quickly increase the
amount of information available for a problem, but care must be taken to avoid creating
inscrutable complexity.

4.3.2 Verifying hypotheses on limited domains

Although we have some intuitions (borne out empirically, albeit anecdotal) regarding the
types of regularities that allow for robust learning between entities, we would nevertheless
like to confirm and further explore these ideas. To do so, we will focus on a more limited
domain where the task of named entity recognition is relatively easy, namely, in the yeast
organism. Yeast genes and gene products follow a very regular naming convention, making
them very easy to recognize and allowing us to automatically produce very accurate labels.
We can then use these labels as a gold standard against which to compare the effectiveness

52

of exploiting various regularities in and outside the data, from co-occurrence in the text to
relational properties in a database, determining how often they occur and how useful they
are when they do. For instance, if we know from an external data source that a certain gene
is expressed in a certain cell type, does that imply that those genes and cells will co-occur
often in a paper’s text as well? Likewise, if two entities co-occur in an abstract, are they
more likely to also co-occur in a figure’s caption? Or even in the figure itself (we have some
computer vision tools to aid in the investigation of this question [45])?

4.4 Proposed Schedule

To accomplish these proposed works I will follow this schedule:

Approximate Period Task Possible publication venues
November 2008 - January 2009 Task I ICML/SDM: 1/26/09, KDD: 2/6/09

January - March 2009 Task II ACL: 2/22/09
March - June 2009 Task III CIKM, EMNLP ˜ June/July/09
June - August 2009 Write thesis

August 2009 Defend thesis

Table 12: Timeline for proposed work.

53

5 References

[1] S. Abney. Semisupervised Learning for Computational Linguistics. Chapman & Hall, 2007.
[2] R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks

and unlabeled data. In JMLR 6, pages 1817 – 1853, 2005.
[3] A. Arnold and W. W. Cohen. Intra-document structural frequency features for semi-supervised

domain adaptation. In CIKM ’08, 2008.
[4] A. Arnold, R. Nallapati, and W. W. Cohen. A comparative study of methods for transduc-

tive transfer learning. In Proceedings of the IEEE International Conference on Data Mining
(ICDM) 2007 Workshop on Mining and Management of Biological Data, 2007.

[5] A. Arnold, R. Nallapati, and W. W. Cohen. Exploiting feature hierarchy for transfer learning
in named entity recognition. In ACL:HLT ’08, 2008.

[6] J. Baxter. A Bayesian/information theoretic model of learning to learn via multiple task
sampling. Machine Learning, 28(1):7–39, 1997.

[7] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis of representations for domain
adaptation. In NIPS 20, Cambridge, MA, 2007. MIT Press.

[8] A. L. Berger, S. D. Pietra, and V. J. D. Pietra. A maximum entropy approach to natural
language processing. Computational Linguistics, 22(1):39–71, 1996.

[9] D. M. Blei, J. A. Bagnell, and A. McCallum. Learning with scope, with application to
information extraction and classification. In UAI, pages 53–60, 2002.

[10] J. Blitzer, R. McDonald, and F. Pereira. Domain adaptation with structural correspondence
learning. In EMNLP, Sydney, Australia, 2006.

[11] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT:
Proceedings of the Workshop on Computational Learning Theory, Morgan Kaufmann Publish-
ers, pages 92–100, 1998.

[12] A. Borthwick, J. Sterling, E. Agichtein, and R. Grishman. NYU: Description of the MENE
named entity system as used in MUC-7, 1998.

[13] R. Bunescu, R. Ge, R. Kate, E. Marcotte, R. Mooney, A. Ramani, and Y. Wong. Com-
parative experiments on learning information extractors for proteins and their interactions.
In Journal of AI in Medicine, 2004. Data from ftp://ftp.cs.utexas.edu/pub/mooney/bio-
data/proteins.tar.gz.

[14] R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.
[15] C. Chelba and A. Acero. Adaptation of maximum entropy capitalizer: Little data can help a

lot. In D. Lin and D. Wu, editors, EMNLP 2004, pages 285–292. ACL, 2004.
[16] S. Chen and R. Rosenfeld. A gaussian prior for smoothing maximum entropy models, 1999.
[17] W. W. Cohen. Minorthird: Methods for identifying names and ontological relations in text

using heuristics for inducing regularities from data. http://minorthird.sourceforge.net, 2004.
[18] W. W. Cohen, R. Wang, and R. Murphy. Understanding captions in biomedical publications.

In KDD, pages 499–504, 2003.
[19] M. Collins and Y. Singer. Unsupervised models for named entity classification. In Joint

Conference on Empirical Methods in Natural Language Processing and Very Large Corpora,
1999.

54

[20] T. G. O. Consortium. Gene ontology: tool for the unification of biology. In Nature Genet,
volume 25, pages 25–29, 2000.

[21] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slattery.
Learning to extract symbolic knowledge from the world wide web. In National Conference on
Artificial Intelligence, 1998.

[22] H. Daumé III. Frustratingly easy domain adaptation. In ACL, 2007.
[23] H. Daumé III and D. Marcu. Domain adaptation for statistical classifiers. In Journal of

Artificial Intelligence Research 26, pages 101–126, 2006.
[24] A. Dempster, N. Laird, , and D. Rubin. Likelihood from incomplete data via the em algorithm.

In Journal of the Royal Statistical Society, Series B, 1977.
[25] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. In Annals of

Statistics, 2004.
[26] D. Fisher, S. Soderland, J. McCarthy, F. Feng, and W. Lehnert. Description of the UMass

system as used for MUC-6, 1995.
[27] K. Franzén, G. Eriksson, F. Olsson, L. Asker, P. Lidn, and J. Cöster. Protein names and how

to find them. In International Journal of Medical Informatics, 2002.
[28] W. A. Gale, K. W. Church, and D. Yarowsky. One sense per discourse. In HLT ’91: Proceedings

of the workshop on Speech and Natural Language, pages 233–237, Morristown, NJ, USA, 1992.
Association for Computational Linguistics.

[29] Z. Ghahramami and M. Jordan. Learning from incomplete data. In Technical Report, AI Lab
No. 1509, 1994.

[30] N. Ghamrawi and A. McCallum. Collective multi-label classification. In CIKM, 2005.
[31] A. Globerson and S. T. Roweis. Nightmare at test time: robust learning by feature deletion.

In International Conference on Machine Learning (ICML), 2006.
[32] Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In CAP,

Nice, France, 2005.
[33] M. Janche and S. P. Abney. Information extraction from voicemail transcripts. In EMNLP,

2002.
[34] K. Ji, M. Ohta, and Y. Tsujii. Tuning support vector machines for biomedical named entity

recognition. In ACL Workshop on Natural Language Processing in the Biomedical Domain.,
2002.

[35] J. Jiang and C. Zhai. Exploiting domain structure for named entity recognition. In Human
Language Technology Conference, pages 74 – 81, 2006.

[36] T. Joachims. Transductive inference for text classification using support vector machines. In
ICML 16, 1999.

[37] T. Joachims. Learning to Classify Text Using Support Vector Machines. Kluwer, 2002.
[38] T. Joachims. Transductive learning via spectral graph partitioning. In ICML, 2003.
[39] I. T. Jolliffe. Principal Component Analysis. Springer, 2002.
[40] R. Kraut, S. Fussell, F. Lerch, and J. Espinosa. Coordination in teams: evidence from a

simulated management game, 2004.
[41] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models

for segmenting and labeling sequence data. In Proc. 18th International Conf. on Machine
Learning, pages 282–289. Morgan Kaufmann, San Francisco, CA, 2001.

[42] S.-I. Lee, V. Chatalbashev, D. Vickrey, and D. Koller. Learning a meta-level prior for feature
relevance from multiple related tasks. In Proceedings of International Conference on Machine
Learning (ICML), 2007.

55

[43] A. McCallum and K. Nigam. A comparison of event models for naive bayes text classification.
In In AAAI Workshop on Learning for Text Categorization, 1998.

[44] E. Minkov, R. C. Wang, and W. W. Cohen. Extracting personal names from email: Applying
named entity recognition to informal text. In HLT/EMNLP, 2005.

[45] R. F. Murphy, Z. Kou, J. Hua, M. Joffe, and W. W. Cohen. Extracting and structuring
subcellular location information from on-line journal articles: The subcellular location image
finder. In KSCE, 2004.

[46] National Institues of Health. http://www.pubmedcentral.nih.gov/.
[47] K. Nigam, J. Lafferty, and A. McCallum. Using maximum entropy for text classification, 1999.
[48] K. Nigam, A. K. McCallum, S. Thrun, and T. M. Mitchell. Text classification from labeled

and unlabeled documents using EM. Machine Learning, 39(2/3):103–134, 2000.
[49] T. Ohta, Y. Tateisi, H. Mima, and J. Tsujii. Genia corpus: an annotated research abstract

corpus in molecular biology domain. In HLT: Human Language Technology Conference, pages
92–100, 2002.

[50] R. Raina, A. Y. Ng, and D. Koller. Transfer learning by constructing informative priors. In
ICML 22, 2006.

[51] B. Schölkopf, F. Steinke, and V. Blanz. Object correspondence as a machine learning problem.
In ICML ’05: Proceedings of the 22nd International Conference on Machine Learning, pages
776–783, New York, NY, USA, 2005. ACM.

[52] L. Shi and F. Campagne. Building a protein name dictionary from full text: a machine learning
term extraction approach. BMC Bioinformatics, 6(88), 2005.

[53] V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: from transductive to semi-
supervised learning. In ICML, pages 824–831. ACM, 2005.

[54] C. Sutton and A. McCallum. Composition of conditional random fields for transfer learning.
In HLT/EMLNLP, 2005.

[55] M. Szafranski, Y. Grandvalet, and P. Morizet-Mahoudeaux. Hierarchical penalization. In
Advances in Neural Information Processing Systems 20. MIT press, 2007.

[56] B. Taskar, M.-F. Wong, and D. Koller. Learning on the test data: Leveraging ‘unseen’ features.
In Proc. Twentieth International Conference on Machine Learning (ICML), 2003.

[57] S. Thrun. Is learning the n-th thing any easier than learning the first? In NIPS, volume 8,
pages 640–646. MIT, 1996.

[58] R. Tibshirani. Regression shrinkage and selection via the lasso. In J. Royal. Statist. Soc B,
1996.

[59] V. Vapnik. Statistical Learning Theory. Wiley, 1998.
[60] R. C. Wang, A. Tomasic, R. E. Frederking, and W. W. Cohen. Learning to extract gene-protein

names from weakly-labeled text in preparation. In preparation, 2006.
[61] G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. In

Machine Learning, 1996.
[62] Y. Yang. A study of thresholding strategies for text categorization. In SIGIR, 2001.
[63] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In 33rd

Annual Meeting of the Association for Computational Linguistics, 1995.
[64] M. Zaffalon and M. Hutter. Robust feature selection by mutual information distributions. In

18th Conference on Uncertainty in Artificial Intelligence, 2002.
[65] J. Zhang, Z. Ghahramani, and Y. Yang. Learning multiple related tasks using latent indepen-

dent component analysis, 2005.

56

[66] X. Zhu. Semi-supervised learning literature survey. In Technical Report 1530. University of
Wisconsin, 2005.

[67] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propagation.
Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002.

57

	1 Thesis
	2 Current State of the Art
	2.1 Introduction
	2.2 Problem
	2.3 Transfer learning
	2.4 Domain adaptation
	2.5 Multi-task learning
	2.6 Semi-supervised learning
	2.7 Non-transfer robustness
	2.8 Examples of transfer learning settings & techniques
	2.8.1 Inductive learning
	2.8.2 Transductive learning
	2.8.3 Naive Bayes classifier
	2.8.4 Maximum entropy
	2.8.5 Support vector machines (SVM)
	2.8.6 Comparison of existing techniques

	3 Overall Objective & Preliminary Results
	3.1 Overall objective
	3.2 Feature hierarchy
	3.2.1 Hierarchical feature trees
	3.2.2 New model: hierarchical prior model
	3.2.3 An approximate hierarchical prior model

	3.3 Investigation of hierarchical feature models
	3.3.1 Data, domains and tasks
	3.3.2 Experiments & results
	3.3.3 Intra-genre, same-task transfer learning
	3.3.4 Inter-genre, multi-task transfer learning
	3.3.5 Comparison of HIER prior to baselines
	3.3.6 Conclusions: hierarchical feature models

	3.4 Structural frequency features
	3.4.1 Lexical features
	3.4.2 Document structure
	3.4.3 Structural frequency features

	3.5 Snippets
	3.5.1 Positive snippets
	3.5.2 Negative snippets

	3.6 Investigation of structural frequency and snippet models
	3.6.1 Data
	3.6.2 Experiment
	3.6.3 Results
	3.6.4 Structural frequency features
	3.6.5 Non-transfer: abstract to abstract
	3.6.6 Transfer: abstract to caption, full vs. baseline
	3.6.7 Transfer: abstract to caption, full vs. ablated
	3.6.8 Conclusions: structural frequency features and snippets

	4 Proposed Work & Schedule
	4.1 Task I. Cross-task & cross-domain learning
	4.1.1 Domain adaptation
	4.1.2 Multi-task learning
	4.1.3 Parallel labels: image pointers
	4.1.4 Parallel labels: image & experiment type

	4.2 Task II. Relating external and derived knowledge
	4.2.1 External data sources
	4.2.2 Hard & soft labels

	4.3 Task III. Combining & verifying techniques
	4.3.1 Combining techniques
	4.3.2 Verifying hypotheses on limited domains

	4.4 Proposed Schedule

	5 References

