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Abstract

The problem of transfer learning, where information
gained in one learning task is used to improve performance
in another related task, is an important new area of re-
search. In this paper we address the subproblem of domain
adaptation, in which a model trained over a source domain
is generalized to perform well on a related target domain,
where these two domains’ data are distributed similarly, but
not identically.

Previous work has studied the supervised version of this
problem in which labeled data from both source and tar-
get domains are available for training. In this work, how-
ever, we study the more challenging problem of unsuper-
vised transductive transfer learning, where no labeled data
from the target domain are available at training time, but in-
stead, unlabeled target test data are available during train-
ing.

We describe some current state-of-the-art inductive and
transductive approaches involving three popular learning
models, namely the maximum entropy, support vector ma-
chines and naive Bayes models. We then adapt these mod-
els to the problem of transfer learning for protein name ex-
traction. In the process, we introduce a novel maximum
entropy based technique, Iterative Feature Transformation
(IFT), and show that it achieves comparable performance
with state-of-the-art transductive SVMs.

Finally, we compare the relative strengths and weak-
nesses of these models across the various learning settings,
shedding light both on the algorithms examined and the dif-
ficulty of the respective problems. In addition, we show how
simple relaxations, such as providing additional informa-
tion like the proportion of positive examples in the test data,
can significantly improve the performance of some of the
transductive transfer learners.

1 Introduction

Consider the task ofnamed entity extraction(NER).
Specifically, you are given a corpus of encyclopedia arti-

cles in which all the personal name mentions have been la-
beled. The standard supervised machine learning problem
is to learn a classifier over this training data that will suc-
cessfully label unseen test data drawn from the same distri-
bution as the training data, where “same distribution” could
mean anything from having the train and test articles writ-
ten by the same author to having them written in the same
language. Having successfully trained a named entity clas-
sifier on this encyclopedia data, now consider the problem
of learning to classify tokens as names in instant messenger
data. Clearly the problems of identifying names in encyclo-
pedia articles and instant messages are closely related, and
learning to do well on one should help your performance
on the other. At the same time, however, there are serious
differences between the two problems that need to be ad-
dressed. For instance, capitalization, which will certainly
be a useful feature in the encyclopedia problem, may prove
less informative in the instant messenger data since the rules
of capitalization are followed less strictly in that domain.
Thus there seems to be some need for altering the classi-
fier learned on the first problem (called thesource domain)
to fit the specifics of the second problem (called thetarget
domain). This is the problem ofdomain adaptationand is
considered a type oftransfer learning.

The intuitive solution seems to be to simply train on the
target domain data. Since this training data would be drawn
from the same distribution as the data you will ultimately
test over, this approach avoids the transfer issue entirely.
The problem with this idea is that often large amounts of
labeled data are not available in the target domain. While
it has been shown that even small amounts of labeled target
data can greatly improve transfer results [6, 8], there has
been relatively little work, however, on the case when there
is no labeled target data available, that is, totally unsuper-
vised domain adaptation. In this scenario, one way to adapt
a model trained on the source domain is to make the unla-
beledtarget test dataavailable to the model during training
time. Leveraging (unlabeled) test data during training time
is calledtransductive learningand is a well studied problem
in the scenario when the training data and test data come



from the same domain. However, transduction is not well-
studied in a transfer setting, where the training and test data
come from different domains. Studying transfer learning in
a transductive setting will be the main focus of our work.

The rest of the paper is organized as follows. In section
2, we compare and contrast transductive transfer learning
with the more traditional learning paradigms while summa-
rizing relevant work done in the past. Section 3 describes
the two discriminative models and one generative model
we considered in detail in this work. In this section, we
describe the adaptations we used to make these models ap-
plicable to the transductive transfer learning setting. One of
these adaptations, called IFT, is one of the original contribu-
tions of this work. We present our experiments and results
in detail in section 4. Lastly, the paper is concluded in sec-
tions 5 and 6 where we comment on the results and discuss
directions for future work.

2 An overview of learning paradigms and re-
lated work

Given an examplex and a class labely, the standard sta-
tistical classification task is to assign a probability,p(y|x),
to x of belonging to classy. In the binary classification
case the labels areY ∈ {0, 1}. In the case we examine,
each examplexi is represented as a vector of binary fea-
tures(f1(xi), · · · , fF (xi)) whereF is the number of fea-
tures. The data consists of two disjoint subsets: the train-
ing set(Xtrain, Ytrain) = {(x1, y1) · · · , (xN , yN )}, avail-
able to the model for its training and the test setXtest =
(x1, · · · , xM ), upon which we want to use our trained clas-
sifier to make predictions.

We discuss below different paradigms of learning asso-
ciated with the classification problem. They are also sum-
marized in table 1 for the reader’s convenience.

In the paradigm ofinductive learning, (Xtrain, Ytrain)
are known, while bothXtest andYtest are completely hid-
den during training time. In the case ofsemi-supervised
inductive learning [27, 22, 11], the learner is also provided
with auxiliary unlabeled dataXauxiliary, that is not part of
the test set. It has been noted that such auxiliary data typ-
ically helps boost the performance of the classifier signifi-
cantly.

Another setting that is closely related to semi-supervised
learning is transductive learning[25, 14, 16], in which
Xtest (but, importantly, notYtest), is known at training
time. That is, the learning algorithm knows exactly which
examples it will be evaluated on after training. This can be a
great asset to the algorithm, allowing it to shape its decision
function to match and exploit the properties seen inXtest.
One can think of transductive learning as a special case of
semi-supervised learning in whichXauxiliary = Xtest.

In the three cases discussed above,Xtest andXtrain are
both assumed to have been drawn from the same distribu-
tion, D. In the setting oftransfer learning, however, we
would like to apply our trained classifier to examples drawn
from a distribution different from the one upon which it was
trained. We therefore assume there are two different dis-
tributions,Dsource andDtarget, from which data may be
drawn. Given this notation we can then precisely state the
transfer learning problem as trying to assign labelsY

target
test

to test dataXtarget
test drawn fromDtarget, given training data

(Xsource
train , Y source

train ) drawn fromDsource. In this paper we
focus on the subproblem ofdomain adaptation, where we
assumeY (the set of possible labels) is the same for both
Dsource and Dtarget, while Dsource and Dtarget them-
selves are allowed to vary between domains. This is in con-
trast to the related subproblem ofmulti-task learning[1, 23]
in which the marginal distribution of the data is assumed
not to change, while the task (and therefore the labels) is
allowed to vary from source to target.

One of the first formulations of the transfer learning
problem was presented over 10 years ago by Thrun [24].
More recently there has been a focus on using source data
to learn various types of priors for the target data [20]. Other
techniques have tried to quantify the generalizability of cer-
tain features across domains [9, 13], or tried to exploit the
common structure of related problems [2, 4].

Although the case of transfer learning without access to
any data drawn fromDtarget is not completely hopeless
[13], in this paper we choose to focus on extensions to the
transfer learning setting that allow us to capture some infor-
mation aboutDtarget. One obvious such setting isinductive
transfer learningwhere we also provide a few auxiliary la-
beled data(Xtarget

auxiliary , Y
target
auxiliary) from the target domain

in addition to the labeled data from the source domain. Due
to the presence of labeled target data, this method could also
be calledsupervised transferlearning and is the most com-
mon setting used by researchers in transfer learning today.

In this work, however, we focus on a new and more chal-
lenging paradigm, namely,transductive transfer learning,
where there is no auxiliary labeled data in the target domain
available for training, but where the unlabeled test set on the
target domainXtarget

test can be seen during training. Again,
due to the lack of labeled target data, this setting could be
consideredunsupervised transferlearning. It is important to
point out thattransductive learningis orthogonal totrans-
fer learning. That is, one can have a transductive algorithm
that does or does not make the transfer learning assumption,
and vice versa. Much of the work in this paper is inspired
by the belief that, although distinct, these problems are nev-
ertheless intimately related. More specifically, when trying
to solve a transfer problem between two domains, it seems
intuitive that looking at theunlabeledtest data of the tar-
get domain during training will improve performance over



Table 1. Learning settings are summarized by the type of auxiliary and test data used. For all settings we assume
(Xsource

train , Y source
train ) is available at training time, whileYtest is unknown. Settings for which we have run experiments (see

table 4) are marked in bold, along with their short name.

Natural name for learning setting Experiment name
Auxiliary data Test data

Domain Labels Domain Xtest

Inductive learning Induct - - Dsource unseen
Semi-supervised inductive learning Dsource unseen Dsource unseen
Transductive learning - - Dsource seen
Transfer learning - - Dtarget unseen
Inductive transfer learning InductTransfer Dtarget seen Dtarget unseen
Semi-supervised inductive transfer learning Dsource unseen Dtarget unseen
Transductive transfer learning TransductTransfer - - Dtarget seen
Supervised Transductive transfer learning Dtarget seen Dtarget seen
Relaxed Transductive transfer learning1 RelaxedTransductTransfer - - Dtarget seen
Semi-supervised transductive transfer learning Dsource unseen Dtarget seen
1 A relaxation of transductive transfer learning in which proportions of labels in the target data is known at training time.

ignoring this source of information.
We note that the setting ofinductive transfer learning,

in which labeled data from both source and target domains
are available for training, serves as a rough upper-bound to
the performance of a learner based ontransductive trans-
fer learning, in which no labeled target data is available.
Hence, although our primary interest is the transductive
transfer setting, we also used the former setting in all our
experiments for purposes of illustration.

For similar reasons, we considered an additional arti-
ficial setting, which we callrelaxed transductive transfer
learning, in our experiments. This setting is almost equiv-
alent to the transductive transfer setting, but the model is
allowed to know the proportion of positive examples in the
target domain. Although this technically violates the terms
of unsupervision in transductive transfer learning, in prac-
tice estimating this single parameter over the target domain
does not require nearly as much labeled target data as learn-
ing all the parameters of a fully supervised transfer model,
and thus serves as a nice compromise between the two ex-
tremes of transduction and supervision.

These and a few other interesting settings are summa-
rized in table 1. Note that we only displayed a small subset
of the many possible learning settings.

3 Methods considered

In this section, we present the two discriminative mod-
els considered in this work, maximum entropy and support
vector machines, and one generative model, the naive Bayes
classifier. For each model, we first summarize their learning
and inference algorithms in the classical inductive learning
setting and then describe the adaptations we made for induc-

tive transfer, transductive transfer and relaxed transductive
transfer learning settings.

3.1 Maximum entropy models

3.1.1 Inductive learning: simple MaxEnt
Entropy maximization (MaxEnt) [3, 18] is a way of mod-
eling the conditional distribution of labels given examples.
Given a set of training examplesXtrain ≡ {x1, . . . , xN},
their labelsYtrain ≡ {y1, . . . , yN}, and the set of fea-
turesF ≡ {f1, . . . , fF }, MaxEnt learns a model con-
sisting of a set of weights corresponding to each class
Λ = {λ1,y...λF,y}y∈{0,1} over the features so as to
maximize the conditional likelihood of the training data,
p(Ytrain|Xtrain), given the modelpΛ. In exponential para-
metric form, this conditional likelihood can be expressed
as:

pΛ(yi = y|xi) =
1

Z(xi)
exp(

F
∑

j=1

fj(xi)λj,y) (1)

whereZ is the normalization term:

Z(xi) =
∑

y∈{0,1}

exp(
F

∑

j=1

fj(xi)λj,y) (2)

In order to avoid overfitting the training data, theseλ’s are
often further constrained to be near 0 by the use of a regular-
ization term which tries to minimize‖Λ‖2

2 ≡
∑

j,y (λj,y)2.
Thus the entire expression being optimized is:

argmax
Λ

N
∑

i=1

log pΛ(yi|xi) − β‖Λ‖2
2 (3)



whereβ > 0 is a parameter controlling the amount of regu-
larization. Maximizing this likelihood is equivalent to con-
straining the joint expectations of each feature and label in
the learned model,EΛ[fj , y], to match empirical expecta-
tionsEtrain[fj, y] as shown below:

Etrain [fj , y] =
1

N

N
∑

i

fj(xi)δy(yi) (4)

EΛ [fj , y] =
1

N

N
∑

i

fj(xi)PΛ(y|xi) (5)

whereδy(yi) = 1 if y = yi and0 otherwise.
In the next few subsections, we will describe how we

adapt the model to various scenarios of transfer learning.

3.1.2 Inductive transfer learning
Source trained prior models: One recently proposed
method [6] for transfer learning in MaxEnt models in-
volves modifyingΛ’s regularization term. First a model
of the source domain,Λsource, is learned by training
on {Xsource

train , Y source
train }. Then a model of the target do-

main is trained over a limited set of labeled target data
{

X
target
train , Y

target
train

}

, but instead of regularizing thisΛtarget

to be near zero by minimizing‖Λtarget‖2
2, Λtarget is in-

stead regularized towards the previously learned source val-
uesΛsource by minimizing‖Λtarget −Λsource‖2

2. Thus the
modified optimization problem is:

argmax
Λtarget

N
target

train
∑

i=1

log pΛtarget (yi|xi)−β‖Λtarget−Λsource‖2
2

(6)
whereN

target
train is the number of labeled training examples

in the target domain. It should be noted that this model
requiresY target

train in order to learnΛtarget and is therefore a
supervised form ofinductive transfer.

Feature space expansion:Another approach to the
problem of inductive transfer learning is explored by
Daumé [8, 9]. Here the idea is that there are certain fea-
tures that are common between different domains, and oth-
ers that are particular to one or the other. More specifically,
we can redefine our feature setF as being composed of
two distinct subsetsFspecific

⋃

Fgeneral, where the con-
ditional distribution of the features inFspecific differ be-
tweenXsource andXtarget, while the features inFgeneral

are identically distributed in the source and target. Given
this assumption, there is an EM-like algorithm [9] for esti-
mating the parameters of these distributions. There is also
a simpler approach [8] of just making a duplicate copy of
each feature inXsource andXtarget, so whereas before you

Figure 1. Illustration of feature space transformation in
transfer learning problem.hS andhT easily separate the
source and target data respectively. But a projection ontoG

is required beforehG can successfully separate both distri-
butions at once.

hadxi = 〈f1(xi)...fF (xi)〉, you now have

xi = 〈 f1(xi)
specific, f1(xi)

general

...fF (xi)
specific, fF (xi)

general 〉
(7)

where specific is source or target respectively, and
fj(xi)

specific is just a copy offj(xi)
general. The idea is

that by expanding the feature space in this way MaxEnt will
be able to assign different weights to different versions of
the same feature. If a feature is common in both domains
its general copy will get most of the weight, while its spe-
cific copies (fsource andf target) will get less weight, and
vice versa.

3.1.3 Transductive transfer learning: Iterative Feature
Transformation (IFT)

In this subsection, we present a new approach for the un-
supervised setting of transductive transfer learning using
MaxEnt. For ease of notation we will useEsource [fj , y]
to meanEx∈Dsource [fj(x), y], and similarly fortarget.

One problem with transfer in MaxEnt is that the joint
distribution of the features with labels differs between the
source and target domains. In other words,Esource [fj , y]
does not necessarily equalEtarget [fj, y]. If the expecta-
tions in the train and test datasets are similar, then theΛ
learned on the training data will generalize well to the test
data. The more these distributions differ, however, the less
well the trained model will perform. Figure 1 illustrates this
phenomenon. In this example, there are two features com-
prising the feature space. The distribution of the positive
(+) and negative (-) classes of the source (S) and target (T)
distributions are plotted with respect to these features. The
supervised, non-transfer problems are simple in this setting
since the source and target data are each easily separable in



this feature space, byhS andhT respectively. For transfer
learning, however, if we train on the source, we might learn
the classifierhS, which depends only onfeature 1. If we
then attempt to classify the target data we will fail, since
feature 1is a poor discriminator of the target data. What we
would like to do is transform the feature space so that the
distribution of the positive and negative classes in that trans-
formed feature space is the same for both domains. This
transformation is represented byG in the figure, a line upon
which the data have been projected. Given this new trans-
formation,hG can easily be learned over the source data
and subsequently performs equally well when transfered to
the target data. Phrased in terms of maximum entropy, we
are trying to learn a transformationG() of the feature space
F such that the joint distributions of the source and target
features with their labels are aligned:

Etarget [G(fj), y] = Esource [G(fj), y] , ∀fj ∈ F (8)

One could relax this condition even further by arguing that
it is enough to transform only one of the domains, say the
source data, so that data from both domains could be sep-
arated by a single hyperplane. In the figure, if we project
only the source data ontoG, but leave the target data un-
touched, the hyperplanehG would still be able to classify
the target data accurately. In maximum entropy phraseol-
ogy, the relaxed transformation can be expressed as:

Etarget [fj , y] = Esource [G(fj), y] , ∀fj ∈ F (9)

The problem with this, of course, is that in the unsuper-
vised transductive transfer case, we do not haveY target and
therefore cannot estimateEtarget [fj, y]. Hence we approx-
imateEtarget [fj, y] using the joint estimates on the target
unlabeled data from a model learned from the source data
as shown below.

Etarget [fj , y] ≈ E
target
Λsource

[fj, y]

=
1

N
target
test

N
target
test
∑

i=1

fj(xi)PΛsource
(y, xi)

whereN
target
test is the number of target domain (unlabeled)

test examples. These estimates may not reflect the true tar-
get expectations, but it is the best we could do in the un-
supervised transductive setting. Now we use these expecta-
tions to define the source domain transformationG as fol-
lows:

∀
Nsource

train

i=1 G(fj(xi)) = fj

E
target
Λsource

[fj, yi]

Esource[fj, yi]
(10)

whereEsource[fj , yi] is given by the formula in (4) and
Nsource

train is the number of labeled training data in the source
domain. It is easy to show that the empirical feature-
label joint expectations of the transformed source data

given by Esource[G(fj , y)] defined this way is equal to
E

target
Λsource

[fj , y], the model expectations of the original fea-
tures in the target domain, satisfying the condition in (9).
The effect is to rescalefj(x), putting more weight on fea-
tures that occur frequently in the target but rarely in the
source (in a conditional sense), and downweighting features
that are common in the source but seldom seen in the target.
This algorithm can be implemented in an iterative fashion
by first training the source model, computing the target ex-
pectations using the source model, transforming the source
features and then retraining the source model.

In practice, since the target expectationE
target
Λsource

[fj , y] is
only approximate, we smooth the transformed features with
the original ones in each iteration as follows:

G′(fj(xi)) = θfj(xi) + (1 − θ)G(fj(xi)) (11)

where the free parameterθ controls the degree to which
we use the target conditional estimates to alter the source
conditionals.

3.1.4 Relaxed transductive transfer learning: biased
thresholding

A natural way to exploit the known value of the proportion
of positive class labels in the target domain is to adjust the
decision threshold of the MaxEnt classifier so that the per-
centage of unlabeled target examples predicted as positive
by the source-trained classifier is equal to the known value.
We call this intuitive algorithmbiased thresholding, to re-
flect the fact that the decision threshold is biased towards
the known information on class ratio.

3.2 Support vector machines

3.2.1 Inductive learning: inductive SVMs
Support vector machines (SVM’s) [15] take a different ap-
proach to the binary classification problem. Instead of ex-
plicitly modeling the conditional distribution of the dataand
using these estimates to predict labels, SVMs try to model
the data geometrically. Each example is represented as an
F -dimensional real-valued vector of features and is then
projected as a point inF -dimensional space.

The inductive SVMexploits the label information of the
training data and fits a discriminative hyperplane between
the positively and negatively labeled training examples in
this space, so as to best separate the two classes. This sep-
aration is called the margin, and thus SVMs belong to the
margin based approach to classification. This formulation
has proven very successful as inductive SVMs currently
have some of the best general performance of any popular
machine learning algorithm.



3.2.2 Inductive transfer learning: inductive SVMs
with concatenated data

Recall that in the supervised inductive transfer case,
we are given the training sets(Xsource

train , Y source
train ) and

(Xtarget
train , Y

target
train ). Since the SVM does not explicitly

model the data distribution, we simply concatenate the
source and target labeled data together and provide the en-
tire data for training. The hope is that it will improve on an
SVM trained purely on labeled source data, by re-adjusting
its hyperplane based on the labeled target data. It is possible
to do better than such a naive approach1, but we used this
as a reasonable baseline.

3.2.3 Transductive transfer learning: transductive
SVMs

Transduction with SVMs, in contrast to probabilistic
models, is quite intuitive. Whereas, in the supervised case,
we tried to fit a hyperplane to best separate the labeled
training data, in the transductive case, we add in unlabeled
testing data which we must also separate. Since we do not
know the labels of the testing data, however, we cannot
perform a straight forward margin maximization, as in
the supervised case. Instead, one can use an iterative
algorithm [14] similar in flavor to the MaxEnt iterative
feature transformation (IFT) algorithm of section 3.1.3.
Specifically, a hyperplane is trained on the labeled source
data and then used to classify the unlabeled testing data. As
in IFT, one can adjust how confident the hyperplane must
be in its prediction in order to use a pseudo-label during the
next phase of training (since there are no probabilities, large
margin values are used as a measure of confidence). The
pseudo-labeled testing data is then, in turn, incorporatedin
the next round of training. The idea is to iteratively adjust
the hyperplane (by switching presumed pseudo-labels)
until it is very confident on most of the testing points, while
still performing well on the labeled training points.

Transductive SVMs were originally designed for the
case where the training and test sets were drawn from the
same domain. Again, since SVMs do not model the data
distribution, it is not immediately obvious how one would
model different distributions in the SVM algorithm. Hence
in this work, we directly test the applicability of transduc-
tive SVMs to the transductive transfer setting.

3.2.4 Relaxed transductive transfer learning: biased
thresholding

As with the maximum entropy approaches described in sec-
tion 3.1.4, transductive SVMs used for transfer can also be
adjusted to match the prior proportion of positive examples
in the target domain.

1For example, one could impose a higher penalty for classification er-
rors on the target data than on the source data.

Specifically, whereas the SVM usually just considers
which side of the hyperplane a test example is on in de-
termining its label (i.e., a threshold of 0), this thresholdcan
be moved so that some points that lie nearest on the nega-
tive side of the hyperplane and would normally be given a
negative label, would instead receive a positive one, or vice
verse. This is very similar to the biased thresholding tech-
nique used in MaxEnt, hence we retain the same name.

3.3 Naive Bayes classifier

3.3.1 Inductive learning: maximum likelihood estima-
tion

Naive Bayes [17] is one of the most popular and effec-
tive generative classifiers for many text-classification tasks.
Like any generative model, its decision rule is given by the
posterior probability of the classy given the examplex,
given byP (y|x), which is computed using Bayes’ rule as
follows:

P (y|x) =
P (x|θ(y))π(y)

∑

y′P (x|θ(y′))π(y′)

(12)

whereθ(y) are the class-conditional parameters andπ(y)
are the prior probabilities. The naive Bayes model
makes the somewhat unrealistic yet practical assumption of
conditional-independence between the features of each ex-
ample, given its class. That is:

P (x|θ(y)) =

F
∏

j=1

P (fj(x)|θj(y)) (13)

In our case, since the features are all binary, we use the
Bernoulli distribution to model each feature as follows:

P (x|θ(y)) =

F
∏

j=1

(θj(y))fj(x)(1 − θj(y))1−fj(x) (14)

whereθj(y) can be interpreted as the probability that the
feature fj assumes a value1 given the classy. The
Bernoulli parametersθj(y) and π(y) are estimated using
Maximum Likelihood training with the labeled training data
(Xtrain, Ytrain) = {(x1, y1), · · · , (xN , yN )} as below:

θj(y) =

∑N

i=1 fj(xi)δy(yi) + λ
∑N

i=1 δy(yi) + 2λ

π(y) =

∑N

i=1 δy(yi)

N
(15)

whereδy(yi) = 1 if y = yi and0 otherwise; andλ is the
Laplace smoothing parameter, which we set to0.05 in our
experiments.



3.3.2 Inductive transfer learning: maximum likeli-
hood estimation with concatenated data

In the inductive transfercase, similar to the SVMs, we
concatenate the entire labeled data(Xsource

train , Y source
train ) and

(Xtarget
train , Y

target
train ) to generate a single training set. Then,

we learn the parametersθj(y) andπ(y) using the maximum
likelihood estimators shown in the classic supervised case
(see eqn. 15). Although more sophisticated approaches are
possible, we tried this algorithm as a simple baseline.

3.3.3 Transductive transfer learning: source-
initialized EM

In the transductive transfer case,(Xtarget
train , Y

target
train ) are not

available for training, butXtarget
test is available at training

time. Learning from unlabeled examples in the generative
framework is done typically using the standard Expectation
Maximization algorithm [19]. The algorithm is iterative,
and consists of two steps: in the E-step corresponding to the
tth iteration, we compute the posterior probability of each
label for all the unlabeled examples w.r.t. the old parameter
valuesθ(t)

j (y), π(t)(y) as follows:

∀yP (y|x, θ(t), π(t)) =
P (x|θ(t)(y))π(t)(y)

∑

y′ P (x|θ(t)(y′))π(t)(y′)
(16)

In the M-step, we estimate the new parameters
θ
(t+1)
j (y), π(t+1)(y) using the posterior probabilities

as follows.

θ
(t+1)
j (y) =

∑N

i=1 fj(xi)P (y|xi, θ
(t)
j (y))

∑N

i=1 P (y|xi, θ
(t)
j (y))

(17)

π(t+1)(y) =

∑N

i=1 P (y|xi, θ
(t)
j (y))

N
(18)

whereN is the number of unlabeled examples available
during training. In our case, this is the size of the set
X

target
test . The iterations are continued until the likelihood

of the unlabeled data converges to a maximum value. In
the completely unsupervised case of the EM algorithm,
the model parameters are initialized to random values
before starting the iterations. In our case, since we have
(Xsource

train , Y source
train ) at our disposal, we first do a classic

supervised training of our model using the labeled source
data, and initialize the parameters to the ones learned from
the source data, before we start the EM iterations. This
encodes the information available from the source data into
the model, while allowing the EM algorithm to discover its
optimal parameters on the target domain.

Table 2. Summary of data used in experiments
Corpus name (Abbr.) Abstracts Tokens % Positive

UTexas (UT) 748 216,795 6.6%
Yapex (Y) 200 60,530 15.0%

Yapex-train (YTR) 160 48,417 15.1%
Yapex-test (YTT) 40 12,113 14.5%

3.3.4 Relaxed transductive transfer learning: redefin-
ing the prior

In the case when the values of the prior probability of each
class in the target data is available, we simply fixπ(y) to
these values and only estimateθ(y) using eqn. 17 in the M-
step of the EM algorithm.

4 Investigation

4.1 Domain

We now turn toprotein name extraction, an interesting
problem domain [21, 26, 12] in which to test these meth-
ods. In this setting you are given text related to biological
research (usually abstracts, captions, and full body text from
biological journal articles) which is known to contain men-
tions of protein names. The goal is to identify which words
are part of a protein name mention, and which are not. One
major difficulty is that there is a large variance in how these
proteins are mentioned and annotated between different au-
thors, journals, and sub-disciplines of biology. Because of
this variance it is often difficult to collect a large corpus
of truly identically distributed training examples. Instead,
researchers are often faced with heterogeneous sources of
data, both for training and testing, thus violating one of the
key assumptions of most standard machine learning algo-
rithms. Hence the setting of transfer learning is very rele-
vant and appropriate to this problem.

4.2 Data and evaluation

Our corpora are abstracts from biological journals com-
ing from two sources: University of Texas, Austin (UT) [5]
and Yapex [10]. Each abstract was tokenized and each to-
ken was hand-labeled as either being part of a protein name
or not. We used a standard natural language toolkit [7] to
compute tens of thousands of binary features on each of
these tokens, encoding such information as capitalization
patterns and contextual information of surrounding words.

Some summary statistics for these data are shown in ta-
ble 2. We purposely chose corpora that differed in two
important dimensions: the total amount of data collected
and the relative proportion of positively labeled examples
in each dataset. Specifically, UT has over three times as
many tokens as Yapex but has only half the proportion of



Table 3. Training and testing data used in the settings of
Inductive learning (I), Inductive Transfer (IT), Transductive
Transfer (TT) and Relaxed Transductive Transfer (RTT).
Abbreviations of data sets are described in table 2.

Setting Source-train Target-train Target-test

I - YTR YTT
IT UT YTR YTT
TT UT - Y

RTT UT - Y

positively labeled protein names. This disparity is not un-
common in the domain and could be attributed to differing
ways the data sources were collected and annotated. Specif-
ically, if the protein mention annotations in Yapex tend to
be longer (that is, extend for more tokens) then the propor-
tion of positively labeled tokens will be higher in Yapex.
For all our experiments, we used the larger UT dataset as
our source domain and the smaller Yapex dataset as our tar-
get. We also split the Yapex data into two parts:Yapex-train
(YTR) consisting of 80% of the data, andYapex-test(YTT),
consisting of the remaining 20%.

In table 3, we display the subsets of data used for various
learning settings in our experiments. Note that the trans-
ductive methods use different testing data from the induc-
tive methods. This choice is made deliberately to provide
a chance for the classifiers in each setting to achieve their
peak performance, i.e., transductive algorithms work best
when there is abundance of unlabeled test data and induc-
tive algorithms work best when there is plenty of labeled
data. However, since the data is slightly different between
inductive and transductive settings, one must use caution in
comparing the transductive results to the inductive ones.

Because of the relatively small proportion of positive ex-
amples in both the UT and Yapex datasets, we are more in-
terested in achieving both high precision and recall of pro-
tein name mentions instead of simply maximizing classifi-
cation accuracy. Since we were dealing with binary, and not
sequential classification, the definition of these measuresis
straightforward as summarized below:

accuracy =
# of tokens labeled correctly by the model

total # of tokens

precision =
# of POS-tokens labeled POS by the model

# of tokens labeled POS by the model

recall =
# of POS-tokens labeled POS by the model

# of POS-tokens

F1 =
2 × recall× precision

recall+ precision
(19)

We use theF1 measure, which combines precision and re-
call into one metric, as our main evaluation measure.

4.3 Experiments and results

We assessed the relative performance of the various
methods on four different settings described in section 3. In
addition to running the corresponding adaptations of each
model for each of the settings, we did a few additional runs
across the settings for purposes of illustration. For exam-
ple, we ran the transductive SVM not only on the transduc-
tive settings, but also on the two inductive settings. Note
that TSVM, when run on the inductive case corresponds to
transductive learning (see table 1) and when run on the in-
ductive transfer case, corresponds to the supervised trans-
ductive transfer learning in table 1. There are other extra
runs we did for the purposes of comparison, which will be-
come apparent from the following discussion.

Table 4 summarizes the results under all four settings.
The inductive experiment is dominated by Naive Bayes,
achieving an F1 of 86% compared to MaxEnt’s 82% and
TSVM’s 73%. This should not be surprising since gener-
ative models are known be robust when large amount of
labeled training data is available.

Moving to the transductive transfer setting causes all
three methods’ performances to fall, but MaxEnt falls most
sharply, causing it to lose its entire lead over TSVM. Note
that in this setting, basic MaxEnt and ISVM have equiva-
lent performance of about 54% F1. The inductive Naive
Bayes (using maximum likelihood estimator) proves to the
top performer in this setting. TSVM, on the other-hand, is
able to adjust its hyperplane in light of the transfer test data
and stabilize its performance at 60%, even though it is un-
labeled, because it knows where these points lie relative to
the labeled training points in feature space. Similarly, we
see the effect of our iterative feature transformation algo-
rithm (IFT, section 3.1.3) on MaxEnt’s transductive trans-
fer performance. We use a conservative value ofθ (.95) to
ease the transition from source- to target-based conditional
feature expectations. Indeed, as expected from our previ-
ous analysis, iteratively combining the approximate joint
feature-label expectations in the target data with the true
joints of the source data improves the overall performance
on the target data. It seems this method is bounded, how-
ever, by the quality of the initial target labels generated by
the source-trained classifier. Given a relatively poor initial
classification, how can we bootstrap our way up to higher
and higher performance? This is certainly a question worthy
of future study. The transductive version of the naive Bayes
(using EM), however, fares worse than its inductive coun-
terpart. Since EM’s optimization function is the marginal
log-likelihood of the test data, it is not guaranteed to im-
prove the classification performance in some cases.

In the relaxed transductive transfer setting, finally, where
the target dataset is still unlabeled but all algorithms aretold
the expected proportion of positive examples, TSVM ex-



Table 4. Summary of % accuracy (Acc), precision (Prec), recall (Rec), and F1 for regular maximum entropy (Basic), It-
erative Feature Transformation MaxEnt (IFT ), prior-based regularized MaxEnt (Regularize), and feature expansion MaxEnt
(Expand), inductive SVM (ISVM ), transductive SVM (TSVM ), Maximum Likelihood Naive Bayes (NB-ML ), and EM based
Naive Bayes (NB-EM ) models under the conditions of classic inductive learning, (Induction ), unsupervised transductive trans-
fer learning, (TransductTransfer), relaxed transductive transfer, (RelaxTransductTransfer), and supervised inductive transfer
(InductTransfer ).

Method
Induction TransductTransfer RelaxTransductTransfer InductTransfer

Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1

MAXIMUM ENTROPY
Basic 95 85 78 82 89 75 42 54 90 65 68 67 91 81 54 65
IFT, 1 iter - - - - 79 41 90 56 - - - - - - - -
IFT, 2 iters - - - - 82 45 86 59 - - - - - - - -
Regularize - - - - - - - - - - - - 96 87 84 85
Expand - - - - - - - - - - - - 93 84 62 72

SUPPORT VECTOR MACHINES
ISVM 92 78 58 67 90 86 40 54 90 86 40 55 92 86 52 65
TSVM 92 68 79 73 91 86 46 60 92 72 75 73 93 86 58 70

NAIVE BAYES
NB-ML 95 80 93 86 85 50 81 62 84 48 85 61 86 55 84 67
NB-EM - - - - 79 40 84 54 80 41 82 55 - - - -

cels. Again, while MaxEnt is able to make significant use
of this information (note the jump to 67% from 54%), it
seems TSVM does a better job leveraging the prior knowl-
edge into better performance. Maximum Likelihood based
Naive Bayes, on the other hand loses out. It seems that the
class conditional probability is more critical in naive Bayes
than the prior, so tuning the latter’s value does not have any
positive impact on its performance. Also, notice that the
EM based naive Bayes is even worse, repeating the pattern
in the transductive transfer case.

Finally, the last column of table 4 compares the perfor-
mance of the three methods for inductive transfer learning:
the prior-based regularized maximum entropy method (Reg-
ularize, described in section 3.1.2), and the feature expand-
ing version (Expand, described in section 3.1.2). We can
see that both methods handily outperform the transductive
transfer methods described in the second column of table
4, and for the most part outperform even the relaxed trans-
ductive transfer versions in column three. This should not
be surprising given the fact that the inductive transfer meth-
ods can actually see some labeled examples from the tar-
get domain and thus, in the case of MaxEnt, better esti-
mate the conditional expectation of the features in the tar-
get data. Likewise, since they have access to labeled target
data, they can also assess the proportion of positive exam-
ples and adjust their decision functions accordingly. What
is more surprising, however, is the fact that these methods
do not significantly outperform the inductive learning meth-

ods described in the first column of table 4. This suggests
that these inductive transfer methods are relying almost en-
tirely on their labeled target data in order to train their clas-
sifiers, and are not making full use of the large amount of
labeled source data. One might assume that having access
to almost four times as much related data, in the form of the
labeled source data, would significantly boost their ability
to classify the target data (this is, after all, one of the stated
goals of transfer learning). Disheartingly, in this instance,
this seems not to be the case. The regularized maximum
entropy model does outperform2 the basic MaxEnt in the
inductive setting, but not by as much as might have been
hoped for.

In order to measure how much these inductive trans-
fer methods’ explicit modeling of the transfer problem was
responsible for their performance, we compared them to
the baselines of ISVM, TSVM, MaxEnt and Naive Bayes
trained on a simple concatenation of the labeled source
and target training data. These transfer-agnostic methods
clearly benefited from the addition of labeled target data (as
compared to columnTransductiveTransfer), yet still yielded
consistently lower F1 than the transfer-awareRegularize
andExpandmethods, suggesting that the mere presence of
labeled sets of both types (source and target) of data is not
enough to account for the transfer methods’ superior results.

2Regularizehas F1 of 85 vs. MaxEnt’s 82. Significance was de-
termined by comparing the 99% binomial confidence intervalsfor each
method’s recall and precision.



Instead, it seems it is the modeling of the different domains
in the transfer problem, even in simple ways, that provides
the extra boost to performance.

5 Conclusions

These experiments and analysis have shed light on a
number of important issues and considerations related to the
problems of transduction and transfer learning.

We have seen that in the case of discriminative models,
even a small amount of prior knowledge about the target
domain can greatly improve performance in a transductive
transfer problem. Generative model is not able to exploit
this information. For all these models, we notice that even
large amounts of source data cannot overcome the advan-
tage of having access to labeled data drawn from the target
distribution.

We have also seen the degree to which pseudo-labeling
based schemes (in both TSVM’s margin-based model and
our MaxEnt’s IFT-based model) can improve performance
by incorporating the unlabeled structure of the target do-
main. However, this improvement is not seen in the gen-
erative Naive Bayes model. We believe this is because
discriminative models directly optimize classification accu-
racy, while the EM based Naive Bayes model optimizes an
unrelated function, namely, the marginal log-likelihood.

Finally, we have seen that the generative Naive Bayes
model is robust in the inductive setting with large amount
of labeled data, while the discriminative models are at least
as good or better in the transductive setting. Of the two
discriminative models considered, the margin based SVM
seems to adapt better to the unlabeled data.

6 Future work

Given the promising results of our MaxEnt based feature
transformation methods, we would like to further investi-
gate the theoretical properties of the IFT-type algorithms.
In particular, we would like to be able to guarantee conver-
gence.

In terms of the named entity extraction application, we
are also looking towards applying these techniques to the
sequential, rather than just binary labeling problem. Most
transfer learning results have emphasized the use of struc-
ture in relating the source and target domain, and it seems
sequential classifiers like conditional random fields [23]
would be better equipped to exploit this structure.
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