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ABSTRACT
The need for mining causality, beyond mere statistical correla-

tions, for real world problems has been recognized widely. Many

of these applications naturally involve temporal data, which raises

the challenge of how best to leverage the temporal information for

causal modeling. Recently graphical modeling with the concept

of “Granger causality”, based on the intuition that a cause helps

predict its effects in the future, has gained attention in many

domains involving time series data analysis. With the surge of

interest in model selection methodologies for regression, such as

the Lasso, as practical alternatives to solving structural learn-

ing of graphical models, the question arises whether and how to

combine these two notions into a practically viable approach for

temporal causal modeling. In this paper, we examine a host of re-

lated algorithms that, loosely speaking, fall under the category of

graphical Granger methods, and characterize their relative perfor-

mance from multiple viewpoints. Our experiments show, for in-

stance, that the Lasso algorithm exhibits consistent gain over the

canonical pairwise graphical Granger method. We also charac-

terize conditions under which these variants of graphical Granger

methods perform well in comparison to other benchmark meth-

ods. Finally, we apply these methods to a real world data set

involving key performance indicators of corporations, and present

some concrete results.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications–Data Mining

General Terms: Algorithms, Performance, Design

Keywords: Graphical models, Causal modeling, time series
data

1. INTRODUCTION
Statistical modeling and data mining methods are play-

ing an increasingly critical role in real world applications
that involve forecasting and prediction. In domains that
involve decision making, such as business intelligence appli-
cations, however, it is hardly satisfactory to merely discover
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the statistical correlations that exist in the data. Causal re-
lationships between the levers, or variables that are subject
to decision making, and the outcomes, those that are objects
of optimization, need to be established so that the provided
insights can be made actionable.

Causal modeling is an area of active research, with rich
existing literature. Most notably the framework of Bayesian
networks [12, 18, 22, 8], and the related causal networks [14,
25, 1, 20], have been recognized as suitable frameworks to
study this issue. There is some very interesting past work
that has revealed cases in which causal structure can be de-
termined purely from statistical tests [26], and sometimes
computationally efficiently. Still in general, the problem
of determining causal structure is considered a major chal-
lenge, both computationally and philosophically. There are
many cases in which statistical observations alone are not
enough to determine the causal structure among a set of
variables, and even in cases where it is possible to do so in
principle, efficient algorithms are hard to come by.

In many applications of business intelligence and opti-
mization, the data available for analysis often involve time
series information. The question of how to leverage the tem-
poral structure present in such data for better understanding
of causal structure among the relevant variables thus natu-
rally arises. Indeed, considerable research has been done on
causal modeling with time series data [1, 7, 30, 21]. Most
past work, however, has focused on the modeling of causal
relationship between temporal variables, thus admitting the
formulation of the causal modeling problem as that of stan-
dard time series statistical modeling.

In the present paper, we address and explore the ques-
tion of to what extent temporal information present in time
series data can assist in the modeling and understanding
of the causal structures between time-persistent features,
rather than temporal variables. Take, as an illustrative ex-
ample, the problem of understanding the causal relation-
ship between various key performance indicators (KPI) one
may have about a company. For example, one might ask a
question such as “Is the stock price of a company causally
affected by the inventory turnover ratio of that company?”
Emphatically, the question we are asking here is not how
much the turnover ratio this quarter will affect the stock
price after a fixed period of time, say two quarters from
now, but rather whether and to what extent the turnover
ratio affects the stock price.

As it turns out, a seminal work in the area of econometrics
by the Novel prize winner, Clive Granger, has addressed this



very question [11]. A notion of causality he introduced, ap-
propriately called “Granger causality”, presents one possible
solution to this question, and is the one that is of particular
interest to us in the present context. Granger causality is
based on the intuition that a cause helps predict its effects
in the future, beyond what is possible with auto-regression.
More specifically, a feature x is said to Granger-cause y, if
auto-regressive model for y in terms of past values of both
x and y is statistically significantly more accurate than that
based just on the past values of y.

As it was originally introduced, Granger causality was de-
fined for a pair of features, and the question of how one
could apply this notion to the analysis of time series data
involving many features was not directly addressed. Pio-
neered by the work by Eichler et al, there has recently been
some interest in combining the notion of Granger causal-
ity with graphical models [7]. However, the area is young
and many issues of practical significance remain, such as
the question of relative accuracy and efficiency of competing
methods. Specifically, with increasing interests in applying
model selection methodologies for solving structural learn-
ing problems for graphical models, it is natural to ask how
best to combine the time series specific notion of causality
that Granger provides with these new learning techniques
to devise a practical approach to temporal causal modeling.

In the present paper, we conduct a systematic empir-
ical investigation as an attempt to start answering such
questions. In particular, we consider a number of variants
which, loosely speaking, fall under the category of graph-
ical Granger methods, including the canonical exhaustive
Granger method and the Lasso-Granger method. We also
compare their performance against some benchmark meth-
ods for time series analysis, including the vector autoregres-
sion (VAR) method [9] and the SIN method [5] tailored to
handle time-series analysis.

We attempt to characterize the relative performance of
these competing methods, by conducting a host of system-
atic simulation experiments, in which a number of parame-
ters of interest are varied and their effects on their perfor-
mance are observed. Specifically, a large number of simula-
tions are randomly generated in which a target time series
model is generated, essentially as a VAR model, and the per-
formance of the various methods is examined as a function
of various parameters of the simulation. Finally, we apply
the proposed method on an actual data set in the domain of
corporate KPIs, obtained from the publicly available S & P
Compustat database [27], and exhibit some concrete results.

The rest of the paper is organized as follows. In Section 2,
we describe the problem formulation as well as the key no-
tion of Granger causality. In Section 3, we describe the
various methods considered in our empirical evaluation and
discuss their relationship. In Section 4, we describe the tech-
niques used to evaluate the performance of these methods.
In particular, the generation process of the target model and
the associated parameters which we vary are described. We
then present the results of our experimental evaluation in
Section 5. We conclude the paper with some remarks and
discussions of open issues in Section 6.

2. PRELIMINARIES
In this section we formally present the problem, introduc-

ing notation and definitions. We also describe the key notion
of “Granger causality”.

2.1 The Problem Formulation
In this section, we precisely formulate the causal modeling

problem we consider in this paper. We are interested in
modeling and characterizing the causal relationship between
features, x1,...,xp. A feature causal network is defined as
a directed graph over the features, in which each edge is
labeled with a natural number called the lag of the edge. The
semantics of a feature causal network is akin to that of the
popular Bayesian networks, but with the underlying premise
that an edge necessarily entails causation, analogously to
the interpretation of an edge in causal networks [26]. As in
Bayesian networks, the lack of an edge between a pair of
features does imply that the two features are conditionally
independent, given some subset of the other features.

Given a feature causal network, we associate a certain
stochastic process that generates time series data with re-
spect to it. In order to define this stochastic process, it is
convenient to introduce the notion of temporal (or lagged)
variables corresponding to each feature xi. That is, for
some predefined window size T , we define temporal variables
x0

i ,...,x
T
i , corresponding to feature xi. The stochastic data

generation process of a feature causal network is concretely
defined by a corresponding graphical model (Bayesian net-
work) over these temporal variables in the following way: If
the lag associated with an edge xi, xj is k, then we place a
directed edge from xT−k

i → xT
j . Given the graphical model

over the temporal variables, the stochastic process starts by
generating an initial sequence of T feature vectors, and sub-
sequently generating, at any given time step, the next fea-
ture vector according to the conditional probability density
defined by the graphical model over the lagged set of vari-
ables, P ({xT

i }|{xt
i}i=1,...,p,t=0,...,T−1), where the variables xt

i

for t = 0, ..., T−1 are instantiated with the values in the vec-
tors in the last T time steps. Note that this is essentially the
way time series data can be obtained using a “unit causal
graph” [1], which plays the role of the graphical model men-
tioned above. Here the conditional density model for an
edge set could in principle be an arbitrary statistical model
[13, 1], but in all of our experiments, we assume that they
are linear Gaussian models [23]. Similarly, we assume that
the initial distribution is a linear combination of Gaussians.
With these assumptions, the stochastic models associated
with causal feature networks are also equivalent to the so-
called Vector Auto-Regressive (VAR) models, but it is im-
portant to recognize that the notion could make sense for a
wider range of model classes.

Given the above definition of a feature causal network,
the goal of a causal modeling algorithm is to infer the struc-
ture of the feature causal network, given as input time series
data generated by its associated stochastic process. Here the
structure of the causal network refers to the directed graph
over the feature space, usually excluding the lag labels at-
tached to the edges, or the particular statistical models in
the associated temporal data generation model. Thus, the
performance of a causal modeling algorithm can be mea-
sured purely in terms of a measure of similarity between the
output or hypothesis graph and the target graph that gave
rise to the input data.

Note that what we present here is closely related to the
standard formulation of statistical modeling for time series
data, but with a slightly different emphasis in its goal. That
is, in the usual formulation, the goal is to recover the as-
sociated model of temporal data generation, whereas here



the goal is in understanding the underlying causal structure
among the features, which is nothing but the graph struc-
ture among the features.

2.2 Granger Causality
As it turns out, a notion of causality that is highly rel-

evant to the present context of temporal causal modeling
called “Granger Causality” has been introduced in the area
of econometrics [11]. This notion is based on the idea that a
cause should be helpful in predicting the future effects, be-
yond what can be predicted solely based on their own past
values. More specifically, a time series (or a “feature” in
the terminology of the present paper) x is said to “Granger
cause” another time series y, if and only if regressing for y
in terms of both past values of y and x is statistically sig-
nificantly more accurate than doing so with past values of y
only. Let {xt}T

t=1 be lagged variables of x and {yt}T
t=1 for y,

and let �xt denote, in general, the vector 〈xt〉tt=1. Then, the
Granger test is performed by first conducting the following
regressions:

yt ≈ A · �yt−1 + B · �xt−1 (1)

yt ≈ A · �yt−1 (2)

and then applying an F-test (or some other similar test) to
obtain a p-value for whether or not (1) results in a better
regression model than with (2) with statistically significantly
advantage.

It should be noted that the original notion of Granger
causality was formulated in terms of linear regression, but
this need not necessarily be the case – there are some non-
linear extensions in the literature [2]. It is also important
to note that Granger causality attempts to capture an in-
teresting aspect of causality, but certainly is not meant to
capture all. In particular, it has little to say about situa-
tions in which there is a hidden common cause for the two
features in question. More generally, in the present paper,
we do not address the important but challenging issue of
dealing with hidden variables.

3. METHODS CONSIDERED
In this section we describe the various methods for tem-

poral causal modeling we consider in our experiments, and
discuss some of their properties.

3.1 Exhaustive Graphical Granger Method
A natural way of applying the notion of Granger Causality

to modeling of time series data involving many features is
to simply apply the Granger causality test to each pair of
features to determine the presence/absence and orientation
of the corresponding edge in the output feature causal graph.
Schematically, this method can be represented as follows.

Procedure Exhaustive-Granger(X,T )

1. Xlag ← Lag(X, T )

2. G = 〈V, E〉 ← FullyConnectedFeatureGraph(X)

3. Determine Gcausal
feature as follows:

(a) For each edge (x, y) in E,

i. orient (x, y) as x → y if Granger(x, y, Xlag)
= ’yes’ and Granger(y, x) = ’no’.

ii. orient (x, y) as x ← y if Granger(x, y, Xlag)
= ’no’ and Granger(y, x) = ’yes’.

iii. Place an unoriented edge (x, y), i.e. y ↔ x, if
Granger(x, y, Xlag) = ’yes’ and Granger(y, x)
= ’yes’.

iv. Place no edge between (x, y), otherwise.

4. Return(Gcausal
feature)

Note here that we use Lag(X, T ) to denote the lagged ver-
sion of data X, that is, the data set constructed by appro-
priately displacing and repeating the temporal variables xlag

i

= xi,0...xi,T of our original features xi. FullyConnected
FeatureGraph(X) denotes the fully connected graph de-
fined over the features. Also note that we use Granger(x, y,
Xlag) to denote the outcome (’yes’ or ’no’) of the Granger
causality test between features x and y applied on the lagged
data Xlag, possibly parameterized by a significance level, as
described above.

In our experiments, we make use of the “grangertest”
function in the lmtest library in R for performing the Granger
Test.

3.2 The Lasso Granger Method
The Exhaustive Granger method of the last subsection

does not address the issue of combinatorial explosion, both
in the computational and statistical senses. Computation-
ally, having to conduct Granger Test, which itself involves
applying regression on the lagged variables, O(p2) times,
where p is the number of features, can be prohibitive for
large values of p. Also, the statistical significance tests, for
all pairs of features, are conducted sequentially without re-
gard to the possible interactions between them.

The Lasso Granger method we consider next is one way
to address such issues. One can apply regression to the
neighborhood selection problem for any particular feature,
namely that of identifying the subset of features on which
the feature in question is conditionally dependent, given the
fact that the best regressor for that variable with the least
squared error will, in theory, have non-zero coefficients only
for the variables in the neighborhood.

The Lasso algorithm for linear regression is an incremental
algorithm that embodies a method of variable selection using
the L1-penalty term [29]. That is, its output, �w, minimizes
the sum of the average squared error of regressing for y, plus
a constant times the L1-norm of the coefficients, namely,

�w = arg min
1

n

∑
(�x,y)∈S

|�w · �x− y|2 + λ||�w||1 (3)

where S is the input sample, n is the number of examples
in S, and λ is a constant to be determined. It is well-known
that the L1-penalized least square regression, as targeted by
the Lasso, is a convex problem, making it possible to attain
the global maximum, via the so-called “least angle regres-
sion” procedure, which incrementally updates the weight for
one variable at a time [6].

The following summarizes the Lasso-Granger method just
described. Note here that we denote by Lasso(y,Xlag) the
set of temporal variables receiving a non-zero coefficient by
the Lasso algorithm, when regressing yt in terms of the
lagged variables xt′ , t

′ = t− T, ..., t− 1 for all x ∈ X.



Procedure Lasso-Granger(X,T )

1. Xlag ← Lag(X, T )

2. G = 〈V, E〉 ← FullyConnectedFeatureGraph(X)

3. Determine Gcausal
feature as follows.

(a) For each feature y in V , wy = Lasso(y,Xlag).

i. For each edge (x, y) in E,

A. orient (x, y) as x→ y if xt ∈ wy for some
t but yt 	∈ wx for all t.

B. orient (x, y) as y → x if yt ∈ wx for some
t but xt 	∈ wy for all t.

C. Place an unoriented edge (x, y), i.e. y ↔
x, if xt ∈ wy for some t and yt ∈ wx for
some t.

D. Place no edge between (x, y), otherwise.

4. Return(Gcausal
feature)

One question that arises is how to set the parameter λ.
In this paper we tried two methods. The first (lasso time
series) uses the generalized cross validation score [10] (a pop-
ular tool for calculating the parameters of regularized linear
regression) to select a set of candidate features, and does
another round of linear regression to select the most signif-
icant subset of these candidates. The second method (lasso
lambda or modified lasso time series) sets λ as in [19]. For
completeness, we also tested a non-Grangerized version of
lasso (without lagging) called lasso standard.

3.3 The SIN Granger Method
As one of the “baseline” methods, we consider the “SIN”

method. SIN is a method for structure learning which works
very well for linear Gaussian graphical models with rela-
tively small numbers of features, thus it should serve as a
good upper bound of ideal performance for that portion of
the problem space.

The SIN method rests on the observation that there is
no causal relationship between two variables, xi and xj , if
there exists a subset of variables Xs ∈ X \ {xi, xj} condi-
tioned upon which xi and xj are independent (the so-called
assumption of faithfulness [22, 26]). Indeed, this is the main
idea behind many causal discovery algorithms such as the
PC-algorithm [26, 1, 25].

More specifically, SIN is based on the fact that the d-
separation, or conditional independence in graphical models,
coincides with the notion of partial correlations. The par-
tial correlation, ρxy.V , between two features x, y is the cor-
relation between them in the conditional distribution given
the rest V of the variables. A key fact is that the partial
correlation can be computed in terms of the inverse of the
covariance matrix Σ−1, known as the concentration matrix,
i.e.

ρxy.V =
−σx,y

√
σx,xσy,y

(4)

where σx,y denotes the x, y-th element of Σ−1.
SIN is also distinguished by the way it applies “simulta-

neous” statistical tests on the hypotheses “ρxy.V = 0?”, for
all pairs x, y, in such a way that the overall error rate can
be controlled.

Given the neighborhood determination made by the SIN
method, what remains is the orientation of the edges in
its output graph. Once again, we resort to the disjunctive
collapsing procedure of a variable space graph to the cor-
responding feature graph, by judging that a directed edge
x → y is to be placed if there is an edge from at least one of
x’s lagged variables x1, ..., xt−1 to yt and vice-versa, and an
undirected one if both are true. A schematic representation
of the resulting method, SIN-Granger, is given below.

Procedure SIN-Granger(X,T )

1. Xlag ← Lag(X, T )

2. G← FullyConnectedV ariableGraph(Xlag)

3. Gundirected
variable ← SIN(G).

4. Gcausal
feature ← ProjectFeatures(Gundirected

variable )

5. Return(Gcausal
feature)

Note that FullyConnectedV ariableGraph(Xlag) denotes
the fully connected graph defined over the lagged variables,
as the name implies. The graph in the temporal variable
space in Line 3 is projected to the feature space by the
ProjectFeatures procedure in Line 4, by merging all the
variables xlag

i of a feature xi into a single node, using the
disjunctive semantics described above, and implicitly em-
ployed by the previous two methods.

When the covariance matrix can be inverted feasibly, the
SIN method does provide a nearly perfect solution to the
structure learning for linear Gaussian graphical models, be-
cause of the correspondence between the zeros in the con-
centration matrix and the d-separation in a linear Gaussian
graphical model. There are issues, however, for example
when the number of features is large and the inversion of the
covariance matrix can fail due to under-specification. Also,
the computation time can be an issue, due to the nearly
cubic time complexity of the matrix inversion process.

In our experiments, we make use of the SIN library in R,
to perform the SIN part.

3.4 Vector Auto-Regressive (VAR) Method
As another “baseline” method, we also consider the Vec-

tor Auto-Regressive (VAR) model estimation method, which
generalizes the univariate auto-regressive (AR) model to mul-
tiple time-series. In the simple AR model, an observation of
time t is given by

xt = c +
t−1∑

i=t−T

aixi + εt

where ai is the parameters of the model and εt is the Gaus-
sian noise. The stochastic model associated with our causal
feature graph is nothing but a VAR model on the lagged
temporal variables, and given the assumption that each of
the models is a linear Gaussian model, they can be formu-
lated as follows. Letting �Xt denote the vector of all features
at time t, a VAR model is defined as:

�Xt ≈ At−1 · �Xt−1 + ... + At−T · �Xt−T (5)

where each of the A matrices are p× p coefficient matrices.
This formulation is essentially a notational shorthand for
multiple linear regression formulations, one for each of the
features x.



The VAR model estimation method is to invert the A ma-
trices in the above formulation, and is basically solving least
squared regression problems. In our experiments, we use
the “estVARXar” function in the DSE library of R, which
in turn makes calls to the “ar” function, an auto-regressive
modeling procedure with ARMA, and has a number of dis-
tinguishing features: It can handle endogenous variables,
optionally invoking a model selection method based on AIC,
and it is using the Yule-Walker approach, and thus the mod-
eling is done effectively with the means subtracted out.

Since the data generation process we use is indeed a VAR
model, this procedure is also expected to work well and pro-
vide another baseline.

3.5 Regularized VARmethods for sparse data
As we pointed out earlier, the estimation using VAR per-

forms well only in cases where the sample size n is much
larger than the number of features p, i.e. n >> p. Rem-
edy for sparse data can be found in various methods which
could be viewed as regularized versions of VAR. Here are a
few examples.

• Stepwise variable selection, as adapted in TETRAD
[28]. This method is not consistent, however, namely
even when the sample size n goes to infinity, it is not
guaranteed that the correct set of non-zero coefficients
will be selected.

• Stochastic search variable selection (SSVS). SSVS can
be thought of as a Bayesian version of the lasso, in
which the parameter estimation is explored using Monte
Carlo-Markov chain sampling. The use of MCMC lim-
its the applicability of this method to relatively small
numbers of features p, as analyzed in [4].

• VAR with Ridge regression is able to achieve stable
and plausible estimates when the number of features
is much larger than the sample size, i.e. p >> n and
demonstrate encouraging improvement in the applica-
tions to the brain function prediction [30].

• James-Stein type shrinkage replaces the VAR regres-
sion covariance with the Jaimes-Stein shrinkage covari-
ance and is applied to solve problems in system biology
[21].

Several comparison studies on the relative performance
of different regularization methods show that: in general
a hard threshold performs slightly worse than other ap-
proaches; in terms of connectivity, ridge regression works
the best for graphs with large connectivity while Lasso out-
performs others for graphs with small connectivity; in terms
of small sample size, Lasso tends to perform poorly and
James-Stein type shrinkage works well.1 Overall, however,
the difference in performance between the various penaliza-
tion schemes is relatively small [21, 30]. Therefore in the
present paper we elect to employ the VAR algorithm com-
bined with AIC as a representative of this class of methods.

1Note that Lasso applied as regularization on VAR here is
to be disntinguished from Lasso Granger of the last subsec-
tion – in Lasso Granger, Lasso is applied for regressing each
variable, whereas here the L1-penalization is to be applied
for the VAR estimation process for the entire vector.

3.6 Consistency of Lasso Granger
One of the major advantages of using Lasso for graphi-

cal model structure learning is its consistency. It has been
shown that the probability of Lasso falsely including any of
the non-neighboring variables of a given node into its neigh-
borhood estimate vanishes exponentially fast, even if the
number of non-neighboring variables may grow very rapidly
with the number of observations. More rigorously, letting
p denote the number of features, a be an arbitrary node in
the true graph G, and nea be the set of neighbors of a in
G = 〈V, E〉, and θa,nea be the coefficient vector of the opti-
mal linear regressor for a using nea, we have the following
theorem due to [19].

Theorem 1. Suppose the following assumptions are ful-
filled:
(1)high dimensionality: there exists γ > 0, so that p =
O(nr) for n → ∞. (2) non-singularity: for all a ∈ V
and n ∈ N , Var(a) = 1 and there exists v2 > 0, so that
Var(a|V \ {a}) ≥ v2. (3) sparsity: there exists 0 ≤ κ ≤ 1,
maxa |nea| = O(nκ), for n → ∞ ; (4) sparsity: there exists

ϑ < ∞, ||θa,neb\{a}||1 ≤ ϑ for all (a, b) ∈ E; (5) magnitude
of partial correlations: There exists a constant δ > 0 and
some ξ > κ, such that πab ≤ δn−(1−ξ)/2 for all (a, b) ∈ E,
where πab is the partial correlation between a and b [17]: (6)
neighborhood stability: there exists some δ < 1, |Sa(b)| < δ

for all (a, b) ∈ E, where Sa(b) =
∑

k∈nea
sign(θa,nea

k )θb,nea

k .

Then, if the penalty for sample size n satisfies λn ∼ dn−(1−ε)/2

with some κ ≤ ε ≤ ξ and d > 0, there exists some c > 0 such
that for all a ∈ V it holds that the estimated neighborhood
n̂ea satisfies P (n̂ea ⊆ nea) = 1−O(exp(−cnε)) for n→∞.
In addition, we also have P (nea ⊆ n̂ea) = 1−O(exp(−cnε))
for n→∞.

Notice that Theorem 1 holds even for cases in which the
number of variables is larger than the number of observa-
tions, i.e. p >> n.

In our present context, this theorem can be directly ap-
plied to derive a corollary on the consistency of Granger
Lasso.

Corollary 1. Suppose that a true feature causal graph
G and its associated stochastic model (graphical model) M
gives rise to time series data. If the assumptions in Theo-
rem 1 are fulfilled by the M ’s, then Granger Lasso, taking
the time series data as input, will output graph which is con-
sistent with the true graph G with probability converging to
1, as n and p tend to ∞.

Proof. In step 3(a) of Procedure Lasso-Granger, follow-

ing Theorem 1 we have P (n̂eλ
x ⊆ nex) = 1− O(exp(−cnε))

for n → ∞ and P (nex ⊆ n̂eλ
x) = 1 − O(exp(−cnε)) for

n → ∞. Given the correctness of the estimated graphical
model on the lagged variables, the disjunctive projection in
steps A-D in Procedure Lasso-Granger will also be correct
with respect to the edge presence and orientation in the
original feature causal graph.

3.7 Complexity Considerations
While most research on structure learning focuses on re-

covering the true graph that gave rise to the data, in many
real world applications we need to deal with large-scale data
with hundreds or thousands of features. This may pro-
hibit the use of accurate but computationally demanding



methods. The computational complexity is therefore an im-
portant factor that directly influences the applicability of
a learning algorithm. Here we analyze the computational
complexity of the main methods considered in this paper:

SIN. The most computationally expensive operation in the
SIN algorithm is matrix multiplication and inversion. As is
well-known, the general complexity of inverting a matrix is
essentially cubic in the dimension2. Therefore the computa-
tional complexity of SIN is O((pT )3 + n(pT )2)

LassoGranger. Solving the original objective function with
L1 regularizer in Lasso requires quadratic programming, an
NP-hard problem in general. However, by rewriting the ob-
jective function, we can solve the problem using the Least
Angle Regression (LARS), which computes all possible Lasso
estimates for a given problem and enjoys a much smaller
computational complexity [6]. With this implementation,
the computational complexity of Lasso Granger is signifi-
cantly reduced to O(n(pT )2).

Exhaustive Granger. The exhaustive Granger tests the
Granger causality via regression between each pair of fea-
tures. Therefore the complexity is O(n2p2T 2).

VAR. The VAR formulation is essentially multiple linear re-
gression, which theoretically involves cubic complexity. How-
ever, there are many types of speeding algorithms, such as
Yule-Walker approach, and the time complexity is between
O(p2T 2) and O(pT ).

4. EVALUATIONMETHODS
In this section we introduce the techniques used to eval-

uate the temporal causal modeling algorithms laid out in
the previous section. Specifically, we describe the data gen-
eration process used in our simulation experiments, as well
as some measures of graph similarity used to quantify the
quality of the models output by the respective algorithms.

4.1 Synthetic Data Generation
The data generation process we use essentially parallels

the problem formulation presented in Section 2.1, in terms
of the feature causal network and its associated stochastic
data generation process. We begin by randomly generating a
feature causal network. This random generation is governed
by a parameter which we call affinity, or the probability
of forming a link between any given pair of feature nodes.
Having formed the feature causal graph, we then generate
a unit causal graph in the temporal variable space that is
consistent with it. This is done by randomly choosing the lag
k for any edge x → y in the feature causal graph, according
to a uniform distribution within a prescribed range and then
forming an edge xT−k → yT in the unit causal graph.

Once this graph structure is created, we then randomly
assign those links some weight, sampled from a specified
range(min, max effect), which determines the parameter of
the corresponding linear gaussian model. Each variable also
gets some gaussian noise of mean 0 and some specified range
of standard deviations. We then apply the unit causal graph

2The complexity of matrix inversion can be reduced, for
example to O(p2.376) by using the Coppersmith Winograd
algorithm [3].

recursively to obtain the time series data, each of some fixed
time steps (MaxT ). Once we reach MaxT , we have one com-
plete sample. We then repeat this process to get n samples.

4.2 Evaluating Graph Similarity
We now describe how we quantify the similarity between

the target causal graph used to generate the input data and
the output causal graph. For this, we simply apply the met-
rics of Precision, Recall and F1-measure, commonly used in
the machine learning and information retrieval literature,
to the problem of predicting the 0,1-label in the adjacency
matrix representation of the graph. (See, for example, [25]
for use of these metrics in evaluation of structural learn-
ing methods.) Note that for any pair of features, xi and
xj , there are two entries in the adjacency matrix A, A[i, j]
and A[j, i], each representing an edge going in one direc-
tion. A bi-directed edge corresponds to having 1 in both
entries, whereas a directed edge would have 1 in one of the
entires and a 0 in the other. Given this formulation, preci-
sion and recall are well-defined. For example, predicting a
bi-directional edge between xi and xj , when there is actu-
ally a directed edge from xi → xj , would entail one correct
prediction and one prediction error.

So, letting A∗ denote the target adjacency matrix, Â the
output adjacency matrix, and V ×V the set of feature pairs,
precision P and recall R are defined as follows:

P =
|{(i, j) ∈ V × V : Â[i, j] = A∗[i, j]}|
|{(i, j) ∈ V × V : Â[i, j] = 1}|

R =
|{(i, j) ∈ V × V : Â[i, j] = A∗[i, j]}|
|{(i, j) ∈ V × V : A∗[i, j] = 1}|

Furthermore, given precision P and recall R, the F1-measure,
F1, is defined in the usual manner.

F1 =
2PR

(P + R)

There is clearly a trade-off between precision and recall as
the goal of prediction, and the F1-measure tries to balance
the overall quality of prediction.

5. EXPERIMENTAL RESULTS
In this section, we present the results of our experimental

evaluation. First, we examine how the relative performance
of the competing methods depends on various parameters
of the problem. We then present some concrete examples of
applying these same methods on a real world data set and
discuss their relative merits.

5.1 Synthetic Data
A series of simulation experiments were conducted, each

of which consisted of a large number of randomized simu-
lation runs, in which various aspects of the simulation or
the problem space were varied, which are mostly parame-
ters of the target causal and stochastic model to be learned
from generated data. In each such run, all or a subset of the
competing methods were run to obtain their learned models,
which were then compared and evaluated against the target
model that generated that run’s data.

Several series of such experimentation were run: First, all
the methods were run on a representative range of the prob-
lem space varying all the parameters of the problem space
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Figure 1: F1 varies as a function of (a) MaxT , (b) features, (c) sparsity, (d) noise, (e) samples per feature and
(f) samples per feature per lag.
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Figure 2: F1 varies as a function of maximum lag (MaxT , (a) and (b)) and features (p, (c) and (d)) conditioned
on samples per feature per lag (n/p/MaxT ).

to examine the overall trend of their relative performance.
We then “drilled down” into some selected sub-spaces of the
problem space to examine some specific questions. Part of
this is done by examining the distributions of relative per-
formance measures, conditioned upon some restrictions of
one or more of the parameters considered, in terms of in-
equalities (e.g. the sample size per feature be greater than
10 or less than 10.)

The parameters of the problem space that we varied are:

the number of features, the maximum lag, the number of
samples per feature, the number of samples per feature per
maximum lag, the maximum standard deviation of noise,
the maximum/minimum coefficient of an effect, the affinity
or anti-sparsity, which is defined as the probability of an
edge presence.

In each of these series of experiments, the simulations were
repeatedly run on a large number of different data sets, with
all the reported performance numbers averaged over them,



(a)  Truth SIN Lasso (STD) Lasso (TS) Lasso (Lambda VAR Granger

(b)  Truth SIN Lasso (STD) Lasso (TS) Lasso (Lambda VAR Granger

(c)  Truth SIN Lasso (STD) Lasso (TS) Lasso (Lambda VAR Granger

Figure 3: Comparison between the true, generative graph structure (left) and the graphs learned by various
algorithms on multiple synthetic data sets (right).
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Figure 4: Graph structure output by various algorithms on real KPI data.

and confidence intervals calculated using the standard er-
ror. The results of these experiments are shown in Figure
1. Although complete results for exhaustive Granger are
not shown (due of the excessive time required to complete
each trial, as will be shown in the plots of running time:
c.f. Figure 5), preliminary experiments indicate exhaustive
Granger’s performance is somewhere between SIN and VAR.
Plot (a) indicates that increasing lag (MaxT ), in and of it-
self, does not affect performance that much, while (b) shows
the expected drop in performance as the number of features
increases. This decrease in performance is also seen in (c) as
a function of affinity. Interestingly, as the density increases,
most of the algorithms suffer, while the time series lasso
(T) maintains its performance and thus relatively improves.
Plot (d) suggests that all methods are relatively robust to
noise. Finally, plots (e) and (f) show a shrinking of the gap

between SIN and lasso as the number of samples available
to the algorithm (weighted by feature size and lag, respec-
tively) approaches zero. This makes sense in light of the
fact that the regularized lasso has many fewer parameters
to estimate than the full VAR or SIN model, and thus can
achieve comparable results with fewer examples.

Because of the marginalization over unmeasured param-
eters in the plots above, it is somewhat difficult to tease
out exactly how variations in groups of parameters affect
each algorithm’s relative and absolute performance. Figure
2 attempts to address this issue by showing a detail of Fig-
ure 1, this time splitting the plots out by conditioning on
sample size. F1 vs maximum lag in (a) and (b), and F1

vs p in (c) and (d). Plots (a) and (c) are for experiments
with small samples per feature per lag (n/p/MaxT < 10),
while (b) and (d) show trials with a relatively large num-



ber of samples per feature per lag. We can see that SIN
dominates when it has access to lots of examples (b). As
the number of examples decreases, however, the lasso-based
methods become more competitive (a). A similar pattern is
seen between plots (c) and (d). We see that SIN excels when
given data containing few features and lots of data (d), and
struggles otherwise. Again, due to the high computation
time, Exhaustive Granger trials are not shown.

Figure 3 shows the actual graph structure output on a
few such trials. The leftmost graph shows the true struc-
ture from which the synthetic data was generated. To the
right are the graphs learned by each of the six algorithms.
Examining these output graphs is illuminating, since they
contain extra information that is lacking in simpler perfor-
mance metrics summarized as a single number. For example,
you can see, for this subspace of the problem space, SIN is
very accurate, VAR tends to output dense graphs, Exhaus-
tive Granger seems less robust alternately outputting dense
and spare graphs, and the model selection mechanism of the
time series Lasso with the “Lambda” modification appears
to be working well.
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Figure 5: Log runtime (in seconds) as a function of
effective feature size (p ∗MAXT )).

Figure 5 shows the rate at which the running time of each
algorithm grows as a function of the number of features,
15 < p < 125, times the maximum lag, 1 < MaxT < 5.
Since all of these algorithms (except standard lasso) lag the
data before attempting to model it, the effective number of
features of the data is p*MaxT . Time is plotted on a log scale
to better show the exponential growth in running time. Ex-
haustive Granger (denoted “Granger” in the graph) clearly
is the most expensive algorithm taking over ten minutes for
a dataset of less than 100 features. SIN grows at a slightly
slower rate, followed by the two lagged lasso methods (T and
M in the figure). Standard lasso grows the most slowly since
it does not lag its input data. VAR is interesting because it

starts out fast but begins to run much more slowly as MaxT

is increased. This is because, unlike the other algorithms,
VAR actually searches the space of possible lagged models
in order to choose the best fit.

5.2 Real World Data
In this subsection, we present some results of applying our

causal modeling methods on a real world data set involving
key performance indicators (KPI’s) of electronics companies.
The problem of monitoring and analyzing performance in-
dicators of corporations is important in business investment
decision making, and has recently received considerable at-
tention [15, 16]. This particular data set was obtained from
Standard and Poor’s Compustat database [27].

The data set consists of values of various performance in-
dicators for electronics companies that are in the industry
group of “semiconductors and semiconductor equipments.”
Specifically, quarterly data over the duration of three years
were pulled, for companies having at least 25 million dollars
in annual revenue. The performance indicators in the data
set include financial performance metrics such as Revenue
growth, EBIT margin, productivity (Revenue/Employee),
ROA, Market Cap Growth, Earnings per Share (EPS), PE
Ratio, and Beta. The data also include lower level (op-
erational) metrics such as Revenue per R&D Spend, Busi-
ness Week’s Investing 4 Future Index, Capital Expenditure /
Revenue, Current Ratio, Working Capital/Revenue, COGS/
Revenue, SG&A Revenue, Operating Cash Flow/Revenue,
Inventory Cost/Revenue, Inventory Turnover, Cash conver-
sion cycle in days, SG&A Revenue, and Net Working Capital
Ratio.

For many of these metrics, we consider both “absolute”
values and the “CAGR” values or the “Compound Annual
Growth Rate”, which measures the annual rate of growth of
the KPI in question. We note that some normalization and
outlier filtering were performed in generating these data.

The results of running each of the structure learning al-
gorithms on this KPI data are shown in Figure 4. Some
interesting observations can be made, particularly with the
output graph of ”Modified Lasso time series”. For exam-
ple, we see that SGA2Rev (SGA to Revenue) is causally
related to PE Ratio. We also see that Inventory Turnover
is causally related to Beta. Since SGA to Revenue and In-
ventory Turnover are lower level operational metrics than
PE Ratio and Beta, which are financial, this admits the in-
terpretation that the former two metrics could be ”levers”
to pull for attaining desired financial performance in terms
of the latter two. Although interpreting these relationships
properly is difficult without deeper domain knowledge, it is
clear that the graph learned by the lasso with lambda tun-
ing is the most succinct and potentially useful for corporate
performance management purposes.

Even with domain expertise, making sense of the very
dense models generated by Exhaustive Granger (denoted
“GRANGER”), SIN and Var would be tedious, if not im-
possible, and would likely yield few insights.

6. CONCLUDING REMARKS
We have presented a systematic evaluation of the rela-

tive performance of a host of related methods of temporal
causal modeling based on Granger causality and graphical
modeling. Our empirical evaluation has demonstrated that
some of the new model selection methods in regression and



graphical modeling are effective for providing a practical al-
ternative to canonical methods, which are more exhaustive
in nature. In certain scenarios, it has been found, they can
add extra predictive accuracy and may also help improve the
interpretability of obtained models by arriving at more suc-
cinct models. In the future, efforts are required to further
pinpoint the conditions in which the different approaches
discussed in the paper are most effective, and the range of
real world problems for which they add value. Various possi-
bilities should also be explored to improve the performance
of these methods, possibly by combining them with other
techniques known in the causal modeling literature.
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